【題目】如圖,在△ABC中,AC的中點(diǎn)為D,BC的中點(diǎn)為E,F(xiàn)是DE的中點(diǎn),動(dòng)點(diǎn)G在邊AB上,連接GF,延長GF到點(diǎn)H,使HF=GF,連接HD,HE.

(1)求證:四邊形HDGE是平行四邊形.
(2)已知∠C=90°,∠A=30°,AB=4.
①當(dāng)AG為何值時(shí),四邊形HDGE是矩形;
②當(dāng)AG為何值時(shí),四邊形HDGE是菱形.

【答案】
(1)

證明:∵HF=GF,DF=EF,

∴四邊形HDGE是平行四邊形


(2)

解:∵∠C=90°,∠A=30°,AB=4,

∴AC=ABcom∠A=4× =2 ,BC=4× =2,∠B=60°,

∵AC的中點(diǎn)為D,BC的中點(diǎn)為E,F(xiàn)是DE的中點(diǎn),

∴BE=1,DE= AB=2,AD=CD= ,DF=EF=1,DE∥AB,

∴∠CBD=∠B=60°,

① 當(dāng)AG=3或2時(shí),四邊形HDGE是矩形,

當(dāng)AG=3時(shí),如圖1,

BG=4﹣3=1,

∴BG=CE,

BG=BE=EG=1=CE,DE=DE,∠CED=∠DEG=60°,

在△DGE和△DCE中, ,

∴△DGE≌△DCE,

∴∠DGE=∠DCE=90°,

∴四邊形HDGE是矩形;

當(dāng)AG=2時(shí),則AG=BG,

∴DG∥CE,EG∥AC,H,C重合,

∴∠DCE=90°,∴四邊形HDGE是矩形,如圖2;

②過F作MN⊥DE,交AC于M,AB與N,

∵DE∥AB,

∴MN⊥AB,∠MDF=∠A=30°,

∵F是DE的中點(diǎn),

∴MN是線段DE的垂直平分線,

∴ND=NE,

∵DF=1,MB=

∵AD= ,

∴AM= ,

∴AN=AMcom∠A= = ,

當(dāng)AG=AN= 時(shí),G在DE的中垂線上,DG=GE,四邊形HDGE是菱形.


【解析】(1)由平行四邊形的判定直接推出;(2)根據(jù)直角三角形的性質(zhì)得到AB=4,求得AC=2 ,BC=4× =2,∠B=60°,根據(jù)三角形的中位線得到BE=1,DE=2,AD= ,DF=EF=1,根據(jù)平行線的性質(zhì)得到∠CBD=∠B=60°,①當(dāng)AG=3或2時(shí),四邊形HDGE是矩形.當(dāng)AG=3時(shí),根據(jù)全等三角形的性質(zhì)得到∠DGE=∠DCE=90°,于是得到四邊形HDGE是矩形;當(dāng)AG=2時(shí),則AG=BG,推出∠DCE=90°,于是得到四邊形HDGE是矩形;②過F作MN⊥DE,交AC于M,AB與N,根據(jù)全等三角形的性質(zhì)得到∠MDF=∠A=30°根據(jù)線段垂直平分線的性質(zhì)得到ND=NE,求得AN=AMcom∠A= ,當(dāng)AG=AN= 時(shí),G在DE的中垂線上,根據(jù)菱形的判定即可得到結(jié)論.
【考點(diǎn)精析】本題主要考查了兩點(diǎn)間的距離的相關(guān)知識點(diǎn),需要掌握同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個(gè)點(diǎn),間距求法亦如此.平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值.差方相加開平方,距離公式要牢記才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年清明假期全國鐵路發(fā)送旅客約41000000人次,將41000000用科學(xué)記數(shù)法表示為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=4,BD是△ABC的中線,∠ADB=120°,點(diǎn)E在中線BD的延長線上,則△ACE是直角三角形時(shí),DE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與拋物線相交于AB(4,n),點(diǎn)P直線AB上不同于A、B的動(dòng)點(diǎn),過點(diǎn)PPCx軸于點(diǎn)D,交拋物線于點(diǎn)C.設(shè)P點(diǎn)的橫坐標(biāo)為m

(1)直接寫出點(diǎn)B坐標(biāo);

(2)求拋物線的解析式;

(3)請用含m的代數(shù)式表示線段PC的長;

(4)若點(diǎn)P在線段AB上移動(dòng),請直接寫出PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,△ACB的頂點(diǎn)A在△ECD的斜邊DE上,求證:AE2+AD2=2AC2 . (提示:連接BD)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)的圖像在每一個(gè)象限內(nèi), 值隨值的增大而增大的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,下列說法中錯(cuò)誤的是(
A.∵∠A+∠ADC=180°,∴AB∥CD
B.∵AB∥CD,∴∠ABC+∠C=180°
C.∵∠1=∠2,∴AD∥BC
D.∵AD∥BC,∴∠3=∠4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某彈簧的長度與所掛物體質(zhì)量之間的關(guān)系如下表:

所掛物體的質(zhì)量/千克

0

1

2

3

4

5

彈簧的長度/厘米

10

10.4

10.8

11.2

11.6

12


(1)如果所掛物體的質(zhì)量用x表示,彈簧的長度用y表示,請直接寫出y與x滿足的關(guān)系式.
(2)當(dāng)所掛物體的質(zhì)量為10千克時(shí),彈簧的長度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在半徑為4⊙O中,AB、CD是兩條直徑,MOB的中點(diǎn),CM的延長線交⊙O于點(diǎn)E,且EMMC.連結(jié)DE,DE

1求證:;

2EM的長;

3)求sin∠EOB的值

查看答案和解析>>

同步練習(xí)冊答案