【題目】如圖所示,在平面直角坐標(biāo)系xOy中,Rt△AOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2,OB=4,現(xiàn)將Rt△AOB繞著直角頂點(diǎn)O按逆時針方向旋轉(zhuǎn)90°得到△COD,已知一拋物線經(jīng)過C、D、B三點(diǎn).
(1)該拋物線的解析式為 ;
(2)設(shè)點(diǎn)E是拋物線上位于第一象限的動點(diǎn),過點(diǎn)E作EF⊥x軸于點(diǎn)F,并交直線AB于N,過點(diǎn)E再作EM⊥AB于點(diǎn)M,求△EMN周長的最大值;
(3)當(dāng)△EMN的周長最大時,在直線EF上是否存在點(diǎn)Q,使得△QCD是以CD為直角邊的直角三角形?若存在請求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.
【答案】(1)y=﹣+x+4;(2)最大值為;(3)存在,當(dāng)點(diǎn)Q的坐標(biāo)為(,)或(,)時,使得△QCD是以CD為直角邊的直角三角形
【解析】
(1)設(shè)拋物線的解析式為.由線段OA、OB的長度可得出點(diǎn)A、B的坐標(biāo),再由旋轉(zhuǎn)的特性可得出點(diǎn)C、D的坐標(biāo),由點(diǎn)B、C、D三點(diǎn)的坐標(biāo)利用待定系數(shù)法即可求出拋物線的解析式;
(2)在Rt△AOB中,求出∠ABO的正弦余弦值,再根據(jù)相似三角形的判定定理找出△EMN∽△BFN,從而得出∠MEN=∠FBN,用EN的長度來表示出EM和MN的長度,由點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法求出直線AB的函數(shù)解析式,設(shè)出點(diǎn)E的坐標(biāo)為 (0<t<4),即可找出點(diǎn)N的坐標(biāo)為,從而得出線段EN的長度,將EN、MN、EM相加即可得出△EMN的周長,根據(jù)二次函數(shù)的性質(zhì)可求出EN的最大值,由此即可得出結(jié)論;
(3)結(jié)合(2)的結(jié)論可知直線EF的解析式為,分∠QDC=90°和∠DCQ=90°兩種情況來考慮,利用相似三角形的性質(zhì)找出相似邊的比例關(guān)系來找出線段的長度,再根據(jù)點(diǎn)與點(diǎn)間的數(shù)量關(guān)系即可找出點(diǎn)Q的坐標(biāo).
解:(1)設(shè)拋物線的解析式為.
∵OA=2,OB=4,
∴點(diǎn)A(0,2),點(diǎn)B(4,0),
由旋轉(zhuǎn)的特性可知:
點(diǎn)C(﹣2,0),點(diǎn)D(0,4).
將點(diǎn)B(4,0)、點(diǎn)C(﹣2,0)、點(diǎn)D(0,4)代入到拋物線解析式得:
,解得:.
∴該拋物線的解析式為.
故答案為:.
(2)依照題意畫出圖形,如圖1所示.
在Rt△AOB中,OA=2,OB=4,
∴AB=,
∴sin∠ABO=,cos∠ABO=.
∵EM⊥AB,EF⊥OB,
∴∠EMN=∠BFN=90°.
∵∠BNF=∠ENM,
∴△EMN∽△BFN,
∴∠MEN=∠FBN.
在Rt△EMN中,sin∠MEN=,cos∠MEN=,
∴MN=ENsin∠MEN=ENsin∠ABO=EN,
EM=ENcos∠MEN=ENcos∠ABO=EN.
∴C△EMN=EM+MN+EN=EN+EN+EN=EN.
由(1)知A(0,2)、B(4,0),設(shè)直線AB的解析式為:y=kx+2,
∴4k+2=0,解得:k=,
∴直線AB的解析式為:.
設(shè)拋物線上點(diǎn)E的坐標(biāo)為(0<t<4),
∵EF⊥OB,
∴令y=+2中x=t,y=+2,
∴點(diǎn)N的坐標(biāo)為(t,﹣t+2),
∴EN=﹣+t+4﹣(﹣t+2)=﹣+t+2.
∴C△EMN=(﹣+t+2)=﹣(0<t<4).
∴當(dāng)時,EN最大,此時C△EMN最大,
∴C△EMN最大為: [﹣+2]=.
(3)由(2)知,當(dāng)C△EMN取最大值時,EF的解析式為:x=.
①若∠QDC=90°,過點(diǎn)Q作QG⊥y軸于點(diǎn)G,如圖2所示.
∵EF的解析式為:x=,
∴QG=,
∵∠QDG+∠DQG=90°,∠CDO+∠QDG=90°,
∴∠DGQ=∠CDO,
又∵∠QGD=∠DOC=90°,
∴△QDG∽△DCO,
∴,
∴DG=2×.
∴OG=OD﹣DG=4﹣,
∴點(diǎn)Q的坐標(biāo)為(,);
②若∠DCQ=90°,如圖3所示.
CF=﹣(﹣2)=,
∵∠QCF+∠OCD=90°,∠CDO+∠OCD=90°,
∴∠QCF=∠CDO,
又∵∠CFQ=∠DOC=90°,
∴△COD∽△QFC,
∴,即,
∴FQ=,
∴點(diǎn)Q的坐標(biāo)為(,).
綜上所述,當(dāng)點(diǎn)Q的坐標(biāo)為(,)或(,)時,使得△QCD是以CD為直角邊的直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價高于進(jìn)價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,通過畫圖發(fā)現(xiàn),無論取何值,拋物線總會經(jīng)過兩個定點(diǎn)
直接寫出這兩個定點(diǎn)的坐標(biāo) 、 ;
若將此拋物線向右平移個單位,再向上平移個單位,平移后的拋物線頂點(diǎn)都在某個函數(shù)的圖象上,求這個新函數(shù)的解析式(不必寫自變量取值范圍);
若拋物線與直線有兩個交點(diǎn)與.且,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于點(diǎn)(0,3).
(1)求的值及拋物線與軸的交點(diǎn)坐標(biāo);
(2)取什么值時,拋物線在軸下方?
(3)取什么值時,的值隨著的增大而增大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】放風(fēng)箏是大家喜愛的一種運(yùn)動,星期天的上午小明在市政府廣場上放風(fēng)箏.如圖,他在A處不小心讓風(fēng)箏掛在了一棵樹梢上,風(fēng)箏固定在了D處,此時風(fēng)箏線AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動,收線到達(dá)了離A處10米的B處,此時風(fēng)箏線BD與水平線的夾角為45°.已知點(diǎn)A,B,C在同一條水平直線上,請你求出小明此時所收回的風(fēng)箏線的長度是多少米?(風(fēng)箏線AD,BD均為線段,≈1.414,≈1.732,最后結(jié)果精確到1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一枚質(zhì)地均勻的正四面體形狀的骰子,每個面上分別標(biāo)有數(shù)字2,3,4,5.圖②是一個正六邊形棋盤,現(xiàn)通過擲骰子的方式玩跳棋游戲,規(guī)則是:將這枚骰子在桌面擲出后,看骰子落在桌面上(即底面)的數(shù)字是幾,就從圖中的A點(diǎn)開始沿著順時針方向連續(xù)跳動幾個頂點(diǎn),第二次從第一次的終點(diǎn)處開始,按第一次的方法繼續(xù)……
(1)隨機(jī)擲一次骰子,則棋子跳動到點(diǎn)C處的概率是 .
(2)隨機(jī)擲兩次骰子,用畫樹狀圖或列表的方法,求棋子最終跳動到點(diǎn)C處的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l過點(diǎn)A(4,0)和點(diǎn)B(0,4),它與二次函數(shù)y=ax2+2的圖象交于點(diǎn)P,若△AOP的面積為,求二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),與的部分對應(yīng)值如下表所示:
… | -1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 6 | 1 | -2 | -3 | -2 | m | … |
下面有四個論斷:
①拋物線的頂點(diǎn)為;
②;
③關(guān)于的方程的解為;
④.
其中,正確的有___________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù):
萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù)、公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在△ABC 中,R 和 r 分別為外接圓和內(nèi)切圓的半徑,O 和 I 分別為其外心和內(nèi)心,則OI R2Rr .
下面是該定理的證明過程(借助了第(2)問的結(jié)論):
延長AI 交⊙O 于點(diǎn) D,過點(diǎn) I 作⊙O 的直徑 MN,連接 DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所對的圓周角相等),
∴△MDI∽△ANI.∴,∴ IA ID IM IN ①
如圖②,在圖 1(隱去 MD,AN)的基礎(chǔ)上作⊙O 的直徑DE,連接BE,BD,BI,IF
∵DE 是⊙O 的直徑,∴∠DBE=90°.
∵⊙I 與 AB 相切于點(diǎn) F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所對圓周角相等),
∴△AIF∽△EDB.
∴,∴②,
由(2)知:,
∴
又∵,
∴ 2Rr(R d )(R d ) ,
∴ R d 2Rr
∴ d R 2Rr
任務(wù):(1)觀察發(fā)現(xiàn): IM R d , IN (用含R,d 的代數(shù)式表示);
(2)請判斷 BD 和 ID 的數(shù)量關(guān)系,并說明理由.(請利用圖 1 證明)
(3)應(yīng)用:若△ABC 的外接圓的半徑為 6cm,內(nèi)切圓的半徑為 2cm,則△ABC 的外心與內(nèi)心之間的距離為 cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com