【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.將三角板中30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC,BC相交于點(diǎn)E,F,且使DE始終與AB垂直.
(1)△BDF是什么三角形?請(qǐng)說明理由;
(2)設(shè)AD=x,CF=y,試求y與x之間的函數(shù)關(guān)系式;(不用寫出自變量x的取值范圍)
(3)當(dāng)移動(dòng)點(diǎn)D使EF∥AB時(shí),求AD的長。
【答案】(1)等邊三角形,理由見解析;(2)y=x1;(3)AD=.
【解析】
(1)由已知可得∠FDB=60°,∠B=60°,從而可得到△BDF是等邊三角形.
(2)由∠A=30°,∠ACB=90°可得AB=2BC=2,再將CF=y,BF=1-y,代入即可得出x,y的關(guān)系;
(3)當(dāng)EF∥AB時(shí),∠CEF=30°,∠FED=∠EDA=90°,CF=EF,EF=DF,代入計(jì)算即可求得AD的長.
(1)△BDF是等邊三角形,證明如下:
∵ED⊥AB,∠EDF=30°,∴∠FDB=60°,
∵∠A=30°,∠ACB=90°,∴∠B=60°,
∴∠DFB=60°,
∴△BDF是等邊三角形。
(2)∵∠A=30°,∠ACB=90°,
∴AB=2BC=2,
∵CF=y,
∴BF=1y,又△BDF是等邊三角形,
∴BD=BF=1y,
∴x=2(1y)=1+y,
∴y=x1;
(3)當(dāng)EF∥AB時(shí),∠CEF=30°,∠FED=∠EDA=90°,
∴CF=EF,EF=DF,
∵DF=BF=1y,
∴y= (1y),
∴y=,
∴x=y+1=,即AD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以A為圓心,AB的長為半徑的圓恰好與CD相切于點(diǎn)C,交AD于點(diǎn)E,延長BA與⊙A相交于點(diǎn)F.若的長為,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為開展“校園讀書活動(dòng)”,雅禮中學(xué)讀書會(huì)計(jì)劃采購數(shù)學(xué)文化和文學(xué)名著兩類書籍共100本. 經(jīng)了解,購買20 本數(shù)學(xué)文化和50本文學(xué)名著共需1700元, 30本數(shù)學(xué)文化比30本文學(xué)名著貴450 元. (注:所采購的同類書籍價(jià)格都一樣)
(1)求每本數(shù)學(xué)文化和文學(xué)名著的價(jià)格;
(2)若校園讀書會(huì)要求購買數(shù)學(xué)文化本數(shù)不少于文學(xué)名著,且總費(fèi)用不超過2780元,請(qǐng)求出所有符合條件的購書方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,其中A(-4,0),B(2,0),C(3,3),反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C.
(1)求此反比例函數(shù)的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形ABC′D′,請(qǐng)說明點(diǎn)D′在雙曲線上;
(3)連接AC,CD′,求△ACD′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.
∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補(bǔ)角定義)
∴∠2=___(___),
∴AB∥EF(___)
∵∠3=___(___)
又∠B=∠3(已知)
∴∠B=___(等量代換)
∴DE∥BC(___)
∴∠C=∠AED(___).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣4,0)、B(﹣3,﹣3)、C(0,﹣5)
(1)畫出△ABC;
(2)△A′B′C′是△ABC經(jīng)過平移得到的,△ABC中任意一點(diǎn)P(x1,y1)平移后的對(duì)應(yīng)點(diǎn)為P′(x1+5,y1+3).畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(3)設(shè)直線A′C′與x軸交于點(diǎn)Q,求交點(diǎn)Q坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF
(2)填空:
①當(dāng)為 s時(shí),四邊形ACFE是菱形;
②當(dāng)為 s時(shí),以A,F,C,E為頂點(diǎn)的四邊形是直角梯形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(m+2)x+2m-1=0.
(1)求證方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)當(dāng)m為何值時(shí),方程的兩根互為相反數(shù)?并求出此時(shí)方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,E是AC邊上一點(diǎn),EH⊥AB,垂足為H,∠1=∠2.
(1)試說明DF∥AC;
(2)若∠A=38°,∠BCD=45°,求∠3的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com