【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1) 求證:CF=AD;
(2) 若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.
【答案】(1)、證明過程見解析;(2)、正方形,理由見解析.
【解析】試題分析:(1)、根據(jù)CF∥AB可得∠CFE=∠DAE,∠FCE=∠ADE,根據(jù)E為中點可得CE=DE,則△ECF和△DEA全等,從而得出答案;(2)、根據(jù)AD=BD,則CF=BD,CF∥BD得出平行四邊形,根據(jù)CD為AB邊上的中線,CA=CB得出∠BDC=90°得出矩形,根據(jù)CD為等腰直角△ABC斜邊上的中線得出CD=BD,即得到正方形.
試題解析:(1)、∵CF∥AB,∴∠CFE=∠DAE,∠FCE=∠ADE,∵E為CD的中點,∴CE=DE,
∴△ECF≌△DEA(AAS), ∴CF=AD,
(2)四邊形CDBF為正方形,理由為:
∵AD=BD, ∴CF=BD; ∵CF=BD,CF∥BD,∴四邊形CDBF為平行四邊形,
∵CA=CB,CD為AB邊上的中線,∴CD⊥AB,即∠BDC=90°,∴四邊形CDBF為矩形,
∵等腰直角△ABC中,CD為斜邊上的中線,∴CD=AB,即CD=BD,則四邊形CDBF為正方形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于用四舍五入法得到的近似數(shù)4.609萬,下列說法中正確的是( )
A. 它精確到千分位 B. 它精確到0.01
C. 它精確到萬位 D. 它精確到十位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a、b互為相反數(shù),c、d互為倒數(shù),則2016(a+b)﹣cd的值是 ( )
A. 2016 B. 0 C. 1 D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)的圖象與反比例函數(shù)(為常數(shù),)的圖象有一個交點的橫坐標是2.
(1)求兩個函數(shù)圖象的交點坐標;
(2)若點,是反比例函數(shù)圖象上的兩點,且,試比較的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù)x1 , x2 , x3的平均數(shù)是10,則數(shù)據(jù)x1+1,x2+2,x3+3的平均數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系內(nèi)的點A(﹣1,2)與點B(﹣1,﹣2)關(guān)于( )
A.y軸對稱 B.x軸對稱 C.原點對稱 D.直線y=x對稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,并且AF=CE.
(1)求證:四邊形ACEF是平行四邊形;
(2)當(dāng)∠B的大小滿足什么條件時,四邊形ACEF是菱形?請回答并證明你的結(jié)論;
(3)四邊形ACEF有可能是正方形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個三角形的兩邊長分別是2和7,第三邊為偶數(shù),則此三角形的周長是( )
A.15
B.16
C.17
D.15或17
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com