【題目】觀察下列一組圖形中點的個數(shù),其中第1個圖中共有4個點,第2個圖中共有10個點,第3個圖中共有19個點,…,按此規(guī)律第6個圖中共有點的個數(shù)是( 。

A.46B.63C.64D.73

【答案】C

【解析】

由圖可知:其中第1個圖中共有1+1×3=4個點,第2個圖中共有1+1×3+2×3=10個點,第3個圖中共有1+1×3+2×3+3×3=19個點,…,由此規(guī)律得出第n個圖有1+1×3+2×3+3×3+…+3n個點.

解:第1個圖中共有1+1×3=4個點,

2個圖中共有1+1×3+2×3=10個點,

3個圖中共有1+1×3+2×3+3×3=19個點,

n個圖有1+1×3+2×3+3×3+…+3n個點.

所以第6個圖中共有點的個數(shù)是1+1×3+2×3+3×3+4×3+5×3+6×3=64.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:如圖(1),在四邊形ABCD中,若AB=AD,BC=CD,則把這樣的四邊形稱之為箏形.

(1)寫出箏形的兩個性質(zhì)(定義除外)

;②

(2)如圖(2),在平行四邊形ABCD中,點EF分別在BC、CD上,且AE=AF,∠AEC=AFC.求證:四邊形AECF是箏形.

(3)如圖(3),在箏形ABCD中,AB=AD=26,BC=DC=25AC=17,求箏形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(模型建立)

1)如圖1,等腰RtABC中,∠ACB90°CBCA,直線ED經(jīng)過點C,過點AADED于點D,過點BBEED于點E,求證:△BEC≌△CDA;

(模型應(yīng)用)

2)如圖2,已知直線l1yx+3x軸交于點A,與y軸交于點B,將直線l1繞點A逆時針旋轉(zhuǎn)45°至直線l2;求直線l2的函數(shù)表達(dá)式;

3)如圖3,平面直角坐標(biāo)系內(nèi)有一點B3,﹣4),過點BBAx軸于點A、BCy軸于點C,點P是線段AB上的動點,點D是直線y=﹣2x+1上的動點且在第四象限內(nèi).試探究△CPD能否成為等腰直角三角形?若能,求出點D的坐標(biāo),若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標(biāo)為(- 3,4),點B的坐標(biāo)為(6,n).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OB,求△AOB 的面積;

(3)在x軸上是否存在點P,使△APC是直角三角形. 若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結(jié)EF,分別交AD、BC于點G、H.若∠1=2,A=C,試說明ADBCABCD.

請完成下面的推理過程,并填空(理由或數(shù)學(xué)式):

∵∠1=2(   

1=AGH(   

∴∠2=AGH(   

ADBC(   

∴∠ADE=C(   

∵∠A=C(   

∴∠ADE=A

ABCD(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCF中,∠ABC=60°,延長BA至點D,延長CB至點E,使BE=AD,連結(jié)CD,EA,延長EACD于點G

1)求證:ACE≌△CBD;

2)求∠CGE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張背面相同的紙牌AB,C,D,其正面分別劃有四個不同的幾何圖形(如圖).小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸出一張.

1)用樹狀圖(或列表法)表示兩次模牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、CD表示);

2)求摸出兩張牌面圖形既是中心對稱圖形又是軸對稱圖形的紙牌的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD,直線l與直線ABCD相交于點E,F,點P是射線EA上的一個動點(不包括端點E),將△EPF沿PF折疊,使頂點E落在點Q處.

⑴若∠PEF48°,點Q恰好落在其中的一條平行線上,則∠EFP的度數(shù)為

⑵若∠PEF75°,∠CFQPFC,求∠EFP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列平面圖形中,既是軸對稱圖形,又是中心對稱圖形的是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案