【題目】如圖,點(diǎn)CD在線段AB上,且△PCD是等邊三角形.∠APB120°.

1)求證:△ACP∽△PDB;

2)當(dāng)AC4,BD9時(shí),試求CD的值.

【答案】1)詳見解析;(26

【解析】

1)先證明∠ACP=∠PDB120°,然后由∠A+B60°,∠DPB+B60°可證明∠A=∠DPB,從而可證明ACP∽△PDB

2)由相似三角形的性質(zhì)得到 ,根據(jù)等邊三角形的性質(zhì)得到PCPDCD,等量代換得到 ,即可得到答案.

1)證明:∵△PCD為等邊三角形,

∴∠PCD=∠PDC60°

∴∠ACP=∠PDB120°

∵∠APB120°,

∴∠A+B60°

∵∠PDB120°,

∴∠DPB+B60°

∴∠A=∠DPB

∴△ACP∽△PDB

2)解:由(1)得ACP∽△PDB

,

∵△PCD是等邊三角形,

PCPDCD,

,

CD2ACBD

AC4,BD9,

CD6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,都是等腰直角三角形,,的頂點(diǎn)的斜邊的中點(diǎn)重合,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段與線段相交于點(diǎn),射線與線段相交于點(diǎn),與射線相交于點(diǎn).

1)求證:;

2)求證:平分;

3)當(dāng),,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.

1)請(qǐng)用列表或畫樹狀圖的方法表示出上述試驗(yàn)所有可能結(jié)果;

2)求一次打開鎖的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點(diǎn)E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2-4x-3,下列說法中正確的是(

A.該函數(shù)圖象的開口向下B.該函數(shù)圖象的頂點(diǎn)坐標(biāo)是(-2,-7)

C.當(dāng)x<0時(shí),yx的增大而增大D.該函數(shù)圖象與x軸有兩個(gè)不同的交點(diǎn),且分布在坐標(biāo)原點(diǎn)兩側(cè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax22ax+c的圖象經(jīng)過點(diǎn)C0,﹣2),頂點(diǎn)D的坐標(biāo)為(1,﹣),與x軸交于AB兩點(diǎn).

1)求拋物線的解析式;

2)連接AC,E為直線AC上一點(diǎn),當(dāng)△AOC∽△AEB時(shí),求點(diǎn)E的坐標(biāo)和的值.

3)點(diǎn)F 0y)是y軸上一動(dòng)點(diǎn),當(dāng)y為何值時(shí),FC+BF的值最小.并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某球室有三種品牌的個(gè)乒乓球,價(jià)格是789(單位:元)三種.從中隨機(jī)拿出一個(gè)球,已知(一次拿到元球)

1)求這個(gè)球價(jià)格的眾數(shù);

2)若甲組已拿走一個(gè)元球訓(xùn)練,乙組準(zhǔn)備從剩余個(gè)球中隨機(jī)拿一個(gè)訓(xùn)練.

所剩的個(gè)球價(jià)格的中位數(shù)與原來個(gè)球價(jià)格的中位數(shù)是否相同?并簡(jiǎn)要說明理由;

乙組先隨機(jī)拿出一個(gè)球后放回,之后又隨機(jī)拿一個(gè),用列表法(如圖)求乙組兩次都拿到8元球的概率.

又拿

先拿

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)科幻小說《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測(cè)試出這種植物高度的增長(zhǎng)情況(如下表):

溫度/℃

……

4

2

0

2

4

4.5

……

植物每天高度增長(zhǎng)量/mm

……

41

49

49

41

25

19.75

……

由這些數(shù)據(jù),科學(xué)家推測(cè)出植物每天高度增長(zhǎng)量是溫度的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.

1)請(qǐng)你選擇一種適當(dāng)?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡(jiǎn)要說明不選擇另外兩種函數(shù)的理由;

2)溫度為多少時(shí),這種植物每天高度的增長(zhǎng)量最大?

3)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過250mm,那么實(shí)驗(yàn)室的溫度應(yīng)該在哪個(gè)范圍內(nèi)選擇?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)將進(jìn)貨單價(jià)為30元的商品以每個(gè)40元的價(jià)格售出時(shí),平均每月能售出600個(gè),調(diào)查表明:這種商品的售價(jià)每上漲1元,其銷售量就減少10個(gè).

1)為了使平均每月有10000元的銷售利潤(rùn)且盡快售出,這種商品的售價(jià)應(yīng)定為每個(gè)多少元?

2)當(dāng)該商品的售價(jià)為每個(gè)多少元時(shí),商場(chǎng)銷售該商品的平均月利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案