如圖,在平行四邊形ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時,四邊形ABFC是矩形,并說明理由.

(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴∠BAE=∠CFE,∠ABE=∠FCE,
∵E為BC的中點,
∴EB=EC,
∴△ABE≌△FCE,
∴AB=CF.

(2)解:當(dāng)BC=AF時,四邊形ABFC是矩形.
理由如下:∵AB∥CF,AB=CF,
∴四邊形ABFC是平行四邊形,
∵BC=AF,
∴四邊形ABFC是矩形.
分析:(1)根據(jù)平行四邊形的性質(zhì)得到兩角一邊對應(yīng)相等,利用AAS判定△ABE≌△FCE,從而得到AB=CF;
(2)由已知可得四邊形ABFC是平行四邊形,BC=AF,根據(jù)對角線相等的平行四邊形是矩形,可得到四邊形ABFC是矩形.
點評:此題主要考查了學(xué)生對全等三角形的判定,平行四邊形的性質(zhì)及矩形的判定等知識點的掌握情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當(dāng)點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設(shè)運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結(jié)論中不正確的是(  )
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案