【題目】有理數(shù)a,b在數(shù)軸上的對應(yīng)點(diǎn)位置如圖所示:
(1)化簡:∣a∣+∣a+b∣-2∣a-b∣
(2)若a與-的距離等于b與-的距離,求-3(a+b)+5的值.
【答案】(1)-3b;(2)7.
【解析】
(1)根據(jù)數(shù)軸,確定a、a+b,a-b的正負(fù),然后去絕對值化簡即可;(2)由數(shù)軸可得a<-,b>-,設(shè)a與-的距離為x,則a=--x,b=-+x,然后代入-3(a+b)+5求值即可.
解:(1)由數(shù)軸可得a<0,b>0,a+b<0,a-b<0
則∣a∣+∣a+b∣-2∣a-b∣
=-a-(a+b)+2(a-b)
=-a-a-b+2a-2b
=-3b
(2) 由數(shù)軸可得a<-,b>-,設(shè)a與-的距離為x,則a=--x,b=-+x;
將其代入-3(a+b)+5=-3×(--x+-+x)+5=-3×(-)+5=2+5=7.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店購進(jìn)一批甲、乙兩種款型時(shí)尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進(jìn)價(jià)比乙種款型每件的進(jìn)價(jià)少30元.
(1)甲、乙兩種款型的T恤衫各購進(jìn)多少件?
(2)商店進(jìn)價(jià)提高60%標(biāo)價(jià)銷售,銷售一段時(shí)間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標(biāo)價(jià)的五折降價(jià)銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△BCF中,點(diǎn)D是邊CF上的一點(diǎn),過點(diǎn)D作AD∥BC,過點(diǎn)B作BA∥CD交AD于點(diǎn)A,點(diǎn)G是BC的中點(diǎn),點(diǎn)E是線段AD上一點(diǎn),且∠CDG=∠ABE=∠EBF.
(1)若∠F=60°,∠C=45°,BC=2,請求出AB的長;
(2)求證:CD=BF+DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對連續(xù)的偶數(shù)2,4,6,8,…排成如圖的形式.若將圖中的十字框上下左右移動,框住的五個(gè)數(shù)之和能等于2020嗎?若能,請寫出這五個(gè)數(shù)中位置在最中間的數(shù);若不能,請說明理由.你的答案是:____________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一期間,甲、乙兩人分別騎自行車和摩托車從地出發(fā)前往地郊游,并以各自的速度勻速行駛,到達(dá)目的地停止,途中乙休息了一段時(shí)間,然后又繼續(xù)趕路.甲、乙兩人各自行駛的路程與所用時(shí)間之間的函數(shù)圖象如圖所示.
(1)甲騎自行車的速度是_____.
(2)求乙休息后所行的路程與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)為了保證及時(shí)聯(lián)絡(luò),甲、乙兩人在第一次相遇時(shí)約定此后兩人之間的路程不超過.甲、乙兩人是否符合約定,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形中,對角線相交于點(diǎn),,動點(diǎn)從點(diǎn)出發(fā),沿線段以的速度向點(diǎn)運(yùn)動,同時(shí)動點(diǎn)從點(diǎn)出發(fā),沿線段以的速度向點(diǎn)運(yùn)動,當(dāng)其中一個(gè)動點(diǎn)停止運(yùn)動時(shí)另一個(gè)動點(diǎn)也隨之停止.設(shè)運(yùn)動時(shí)間為,以點(diǎn)為圓心,為半徑的⊙與射線,線段分別交于點(diǎn),連接.
(1)求的長(用含有的代數(shù)式表示),并求出的取值范圍;
(2)當(dāng)為何值時(shí),線段與⊙相切?
(3)若⊙與線段只有一個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求證:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2,求∠ACD的度數(shù);
(3)在(2)的條件下,直接寫出DE的長為 .(只填結(jié)果,不用寫計(jì)算過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(0,2),在x軸上取一點(diǎn)B,連接AB,以A為圓心,任意長為半徑畫弧,分別交OA、AB于點(diǎn)M、N,再以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)D,連接AD并延長交x軸于點(diǎn)P.若△OPA與△OAB相似,則點(diǎn)P的坐標(biāo)為( 。
A. (1,0)B. (,0)C. (,0)D. (2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.
(1)如圖①,點(diǎn)A是FG的中點(diǎn),FG∥BC,將矩形DEFG向下平移,直到DE與BC重合為止.要研究矩形DEFG與△ABC重疊部分的面積,就要進(jìn)行分類討論,你認(rèn)為如何進(jìn)行分類,寫出你的分類方法(無需求重疊部分的面積).
(2)如圖②,點(diǎn)B與F重合,E、B、C在同一直線上,將矩形DEFG向右平移,直到點(diǎn)E與C重合為止.設(shè)矩形DEFG與△ABC重疊部分的面積為y,平移的距離為x.
① 求y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
② 在給定的平面直角坐標(biāo)系中畫出y與x的大致圖象,并在圖象上標(biāo)注出關(guān)鍵點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com