【題目】“樹(shù)德之聲”結(jié)束后,王老師和李老師整理了所有參賽選手的比賽成績(jī)(單位:分),繪制成如圖頻數(shù)直方圖和扇形統(tǒng)計(jì)圖:

1)求本次比賽參賽選手總?cè)藬?shù),并補(bǔ)全頻數(shù)直方圖;

2)求扇形統(tǒng)計(jì)圖中扇形D的圓心角度數(shù);

3)成績(jī)?cè)?/span>D區(qū)域的選手中,男生比女生多一人,從中隨機(jī)抽取兩人,求恰好選中一名男生和一名女生的概率.

【答案】1)本次比賽參賽選手總?cè)藬?shù)36人,補(bǔ)圖見(jiàn)解析;(250°;(3

【解析】

1)先求出C區(qū)域的人數(shù)和所占的百分比,然后用C區(qū)域的人數(shù)除以其所占的百分比,即可求得總?cè)藬?shù),再用總?cè)藬?shù)乘以每個(gè)區(qū)域所占的百分比求出每個(gè)區(qū)域的人數(shù),最后完成直方圖即可;

2)用360°乘以D區(qū)域的人數(shù)所占的百分比即可;

3)先求出D區(qū)域男生、女生的人數(shù),再畫(huà)樹(shù)狀圖求出等可能的結(jié)果數(shù)和所求的結(jié)果數(shù),最后根據(jù)概率公式求解即可.

解:(1)本次比賽參賽選手總?cè)藬?shù)是9÷36(人),

80x90的人數(shù)有:36×50%18(人),

80x85的人數(shù)有18117(人),

95x100的人數(shù)有:3641895(人),補(bǔ)圖如下:

2)求扇形統(tǒng)計(jì)圖中扇形D的圓心角度數(shù)是360°×50°;

3)∵D區(qū)域的選手共有5人,其中男生比女生多一人,

∴男生有3人,女生有2人,

畫(huà)圖如下:

共有20種等情況數(shù),其中選中一名男生和一名女生的有12種,

則恰好選中一名男生和一名女生的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中有線段ABCD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.

1)畫(huà)出一個(gè)以AB為一邊的△ABE,點(diǎn)E在小正方形的頂點(diǎn)上,且∠BAE45°,△ABE的面積為;

2)畫(huà)出以CD為一腰的等腰△CDF,點(diǎn)F在小正方形的頂點(diǎn)上,且△CDF的面積為;

3)在(1)、(2)的條件下,連接EF,請(qǐng)直接寫(xiě)出線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線y=x+7a+1與直線y=2x2a+4同時(shí)經(jīng)過(guò)點(diǎn)P,點(diǎn)Q是以M0,﹣1)為圓心,MO為半徑的圓上的一個(gè)動(dòng)點(diǎn),則線段PQ的最小值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高爾夫球訓(xùn)練中,運(yùn)動(dòng)員在距球洞處擊球,其飛行路線滿足拋物線,其圖象如圖所示,其中球飛行高度為,球飛行的水平距離為,球落地時(shí)距球洞的水平距離為

1)求的值;

2)若運(yùn)動(dòng)員再一次從此處擊球,要想讓球飛行的最大高度不變且球剛好進(jìn)洞,則球的飛行路線應(yīng)滿足怎樣的拋物線,求拋物線的解析式;

3)若球洞處有一橫放的高的球網(wǎng),球的飛行路線仍滿足拋物線,要使球越過(guò)球網(wǎng),又不越過(guò)球洞(剛好進(jìn)洞),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,AE∠BAC的平分線,∠ABC的平分線 BMAE于點(diǎn)M,點(diǎn)OAB上,以點(diǎn)O為圓心,OB的長(zhǎng)為半徑的圓經(jīng)過(guò)點(diǎn)M,交BC于點(diǎn)G,交 AB于點(diǎn)F

1)求證:AE⊙O的切線.

2)當(dāng)BC=8,AC=12時(shí),求⊙O的半徑.

3)在(2)的條件下,求線段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GEBC,垂足為點(diǎn)EGFCD,垂足為點(diǎn)F

1)證明:四邊形CEGF是正方形;

2)探究與證明:

將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α45°),如圖2所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)拓展與運(yùn)用:

正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α45°),如圖3所示,當(dāng)B,E,F三點(diǎn)在一條直線上時(shí),延長(zhǎng)CGAD于點(diǎn)H,若AG6GH2,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD,AB=6AD=10,請(qǐng)用直尺和圓規(guī)按下列步驟作圖(不要求寫(xiě)作法,但要保留作圖痕跡);

1)在BC邊上作出點(diǎn)E,使得cosBAE

2)在(1)作出的圖形中

①在CD上作出一點(diǎn)F,使得點(diǎn)DE關(guān)于AF對(duì)稱;

②四邊形AEFD的面積=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段 AB 經(jīng)過(guò)⊙O 的圓心, AC BD 分別與⊙O 相切于點(diǎn) C ,D .若 AC =BD = 4 ,∠A=45°,則弧CD的長(zhǎng)度為(

A.πB.2πC.2πD.4π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yx22mx+m21y軸交于點(diǎn)C

1)試用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);

2)將拋物線yx22mx+m21沿直線y=﹣1翻折,得到的新拋物線與y軸交于點(diǎn)D.若m0CD8,求m的值;

3)已知A2k,0),B0k),在(2)的條件下,當(dāng)線段AB與拋物線yx22mx+m21只有一個(gè)公共點(diǎn)時(shí),直接寫(xiě)出k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案