如圖,在平面直角坐標(biāo)系中,A,B兩點(diǎn)的坐標(biāo)分別為A(-2,0),B(8,0),以AB為直徑的半圓P與y軸交于點(diǎn)M,以AB為一邊作正方形ABCD。
(1)求C,M兩點(diǎn)的坐標(biāo);
(2)試判斷直線CM與半圓P的位置關(guān)系,并證明你的結(jié)論。
(3)在x軸上是否存在一點(diǎn)Q,使得△QMC的周長最?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由。
解:(1)聯(lián)結(jié)PM,因A、B、M均在半圓P上,且AB=10,
∴PM=PA=PB=5,
∴OP=OB-PB=3,
在Rt△POM中,由勾股定理得:OM=,
M的坐標(biāo)為(0,4),
∵正方形ABCD,
∴矩形OBCE,AB=CB=10,
∴CE=OB=8,
∴C的坐標(biāo)為(8,10);
(2)直線CM是半圓P的切線;
聯(lián)結(jié)CM,CP,
由(1)可知,BM=OB-OM=10-4=6,
在Rt△CEM中,CM=,
∵BC=10,
∴BC=CM,
∵BP=PM,CP=CP,
∴△CMP≌△CBP,
∴∠CMP=∠CBP=90°,
∴直線CM是半圓P的切線;
(3)存在;
作M關(guān)于x軸的對稱點(diǎn)M1(0,-4),
聯(lián)結(jié)M1C,與x軸交于點(diǎn)Q,Q為所求,
可求得M1C的解析式為:
當(dāng)y=0時(shí),x=
∴點(diǎn)Q的坐標(biāo)為(,0)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案