【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當△PMN周長取最小值時,則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
【答案】B
【解析】如圖,分別作點P關于OB、OA的對稱點C、D,連接CD,分別交OA、OB于點M、N,連接OC、OD、PM、PN、MN,此時△PMN周長取最小值.根據(jù)軸對稱的性質(zhì)可得OC=OP=OD,∠CON=∠PON,∠POM=∠DOM;因∠AOB=∠MOP+∠PON=40°,即可得∠COD=2∠AOB=80°,在△COD中,OC=OD,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠OCD=∠ODC=50°;在△CON和△PON中,OC=OP,∠CON=∠PON,ON=ON,利用SAS判定△CON≌△PON,根據(jù)全等三角形的性質(zhì)可得∠OCN=∠NPO=50°,同理可得∠OPM=∠ODM=50°,所以∠MPN=∠NPO+∠OPM=50°+50°=100°.故選B.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
利用完全平方公式,可以將多項式變形為的形式, 我們把這樣的變形方法叫做多項式的配方法.運用多項式的配方法及平方差公式能對一些多項式進行分解因式.例如: =
=
==
根據(jù)以上材料,解答下列問題:
(1)用多項式的配方法將化成的形式;
(2)下面是某位同學用配方法及平方差公式把多項式進行分解因式的解答過程:
老師說,這位同學的解答過程中有錯誤,請你找出該同學解答中開始出現(xiàn)錯誤的地方,并用“ ”標畫出來,然后寫出完整的、正確的解答過程:
(3)求證:x,y取任何實數(shù)時,多項式的值總為正數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,屬于必然事件的是
A. 2018年2月19日是我國二十四節(jié)氣中的“雨水”節(jié)氣,這一天會下雨
B. 某班級11名學生中,至少有兩名同學的生日在同一個月份
C. 用長度分別為2cm,3cm,6cm的細木條首尾相連能組成一個三角形
D. 從分別寫有π, , (兩個1之間依次多一個0)三個數(shù)字的卡片中隨機抽出一張,卡片上的數(shù)字是無理數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠一周計劃每日生產(chǎn)自行車100輛,由于工人實行輪休,每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表(以計劃量為標準,增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負數(shù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減/輛 | -1 | +3 | -2 | +4 | +7 | -5 | -10 |
本周總的生產(chǎn)量是多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB =AC,AD⊥BC于點D,AM是△ABC的外角∠CAE的平分線.
(1)求證:AM∥BC;
(2)若DN平分∠ADC交AM于點N,判斷△ADN的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1∥l2,l3、l4和l1、l2分別交于點A、B、C、D,點P在直線l3或l4上且不與點A、B、C、D重合.記∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若點P在圖(1)位置時,求證:∠3=∠1+∠2;
(2)著點P在圖(2)位置時,請寫出∠1、∠2、∠3之間的關系,并說明理由;
(3)若點P在圖(3)位置時,寫出∠1、∠2、∠3之間的關系
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值嗎?遇到這樣的問題,我們可以先思考一下,從簡單的情形入手.先分別計算下列各式的值:
①(x﹣1)(x+1)=x2﹣1;
②(x﹣1)(x2+x+1)=x3﹣1;
③(x﹣1)(x3+x2+x+1)=x4﹣1;
…
由此我們可以得到:(x﹣1)(x99+x98+x97+…+x+1)= .
請你利用上面的結論,再完成下面兩題的計算:
(1)(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1.
(2)若x3+x2+x+1=0,求x2016的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com