【題目】(1)探究1:如圖1,P是△ABC的內(nèi)角∠ABC與∠ACB的平分線BP和CP的交點(diǎn),若∠A=70,則∠BPC=_______度;
(2)探究2:如圖2,P是△ABC的外角∠DBC與外角∠ECB的平分線BP和CP的交點(diǎn),求∠BPC與∠A的數(shù)量關(guān)系?并說(shuō)明理由。
(3)拓展:如圖3,P是四邊形ABCD的外角∠EBC與∠BCF的平分線BP和CP的交點(diǎn),設(shè)∠A+∠D=α.,直接寫出∠BPC與α的數(shù)量關(guān)系;
【答案】(1)125°;(2)∠BPC=90°﹣∠A,理由見解析;(3)∠BPC =180°﹣
【解析】
(1)借助角平分線的性質(zhì)即可得到∠PBC=∠ABC以及∠PCB=∠ACB,然后在△BPC中進(jìn)一步分析可找出∠BPC與∠A的關(guān)系,進(jìn)而求出∠BPC的度數(shù);
(2)根據(jù)三角形內(nèi)角和定理可知∠BPC=180°﹣(∠PBC+∠PCB),根據(jù)角平分線的定義可用(∠DBC+∠ECB)表示∠PBC+∠PCB,再利用三角形外角性質(zhì)得到∠DBC+∠ECB=∠A+∠ACB+∠A+∠ABC,即可求出∠BPC與∠A的關(guān)系;
(3)延長(zhǎng)BA、CD相交于點(diǎn)Q,由(2)的分析可直接得出∠P與∠Q的關(guān)系,而∠BAD與∠CDA是△ADQ的外角,再結(jié)合三角形外角性質(zhì)即可解答.
(1)解:∠BPC=180°﹣(∠PBC+∠PCB)
=180°﹣(∠ABC+∠ACB)
=180°﹣(180°﹣∠A)
=90°+∠A
=90°+35°
=125°
故答案為:125°
(2)∠BPC=90°﹣∠A
理由如下:
∠BPC=180°﹣(∠PBC+∠PCB)
=180°﹣(∠DBC+∠ECB)
=180°﹣(∠A+∠ACB+∠A+∠ABC)
=180°﹣(∠A+180°)
=90°﹣∠A
(3)延長(zhǎng)BA、CD相交于點(diǎn)Q,如圖
∠BPC=90°﹣∠Q
∴∠Q=180°﹣2∠BPC
∴∠BAD+∠CDA=180°+∠Q=180°+180°﹣2∠BPC =360°﹣2∠BPC
∴∠BPC =180°﹣
故答案為:∠BPC =180°﹣
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,點(diǎn)E為CD的中點(diǎn),射線BE交AD的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:四邊形BCFD是菱形;
(2)若AD=1,BC=2,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過(guò)的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮同學(xué)為了鞏固自己對(duì)平行四邊形判定知識(shí)的掌握情況,設(shè)計(jì)了一個(gè)游戲,他將四邊形ABCD中的部分條件分別寫在四張大小、質(zhì)地及背面顏色都相同的卡片上,卡片如圖,他將卡片正面朝下反扣在桌面上,洗勻后從中隨機(jī)抽取兩張,然后根據(jù)卡片上的兩個(gè)條件判斷四邊形ABCD是否為平行四邊形,請(qǐng)你用列舉法(列表法或樹狀圖法)求出他能夠判定四邊形ABCD為平行四邊形的概率.(卡片可用a、b、c、d表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn),點(diǎn)分別在軸正半軸和負(fù)半軸上,.
(1)如圖1,若,,求的度數(shù);
(2)在和內(nèi)作射線,,分別與過(guò)點(diǎn)的直線交于第一象限內(nèi)的點(diǎn)和第三象限內(nèi)的點(diǎn).
①如圖2,若,恰好分別平分和,求的值;
②若,,當(dāng),則的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等邊三角形,是上一點(diǎn),繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到的位置.
(1)如圖,旋轉(zhuǎn)中心是 , ;
(2)如圖,如果是的中點(diǎn),那么經(jīng)過(guò)上述旋轉(zhuǎn)后,點(diǎn) 轉(zhuǎn)動(dòng)了 度;
(3)如果點(diǎn)為邊上的三等分點(diǎn),且的面積為,那么四邊形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD為□ABCD的對(duì)角線,按要求完成下列各題.
(1)用直尺和圓規(guī)作出對(duì)角線BD的垂直平分線交AD于點(diǎn)E,交BC于點(diǎn)F,垂足為O.(保留作圖痕跡,不要求寫作法)
(2)在(1)的基礎(chǔ)上,連接BE和DF.求證:四邊形BFDE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究與發(fā)現(xiàn):在△ABC中,∠B=∠C,點(diǎn)D在BC邊上(點(diǎn)B、C除外),點(diǎn)E在AC邊上,且∠ADE=∠AED,連接DE.
(1)如圖①,若∠B=∠C=45,
①當(dāng)∠BAD=60時(shí),求∠CDE的度數(shù);
②試猜想∠BAD與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.
(2)深入探究:如圖②,若∠B=∠C,但∠C≠45,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形 ABCD 中,AB=2,∠DAB=60°,點(diǎn) E 是 AD 邊的中點(diǎn),點(diǎn) M 是 AB 邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn) A 重合), 延長(zhǎng) ME 交 CD 的延長(zhǎng)線于點(diǎn) N,連接MD,AN.
(1)求證:四邊形 AMDN 是平行四邊形.
(2)當(dāng) AM 的值為何值時(shí),四邊形 AMDN 是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com