【題目】 如圖,大圓O的半徑OC是小圓O1的直徑,且有OC垂直于圓O的直徑AB.圓O1的切線AD交OC的延長線于點(diǎn)E,切點(diǎn)為D.已知圓O1的半徑為r,則AO1=_____,DE=_____.
【答案】r; r.
【解析】
連接O1D,由切線的性質(zhì)知O1D⊥AE,由題意知,CO=AO=2r,O1D=O1C=r,進(jìn)而由切線長定理知,AD=AO=2r;再根據(jù)勾股定理得AE2=AO2+OE2,O1E2=O1D2+DE2,然后即可得到關(guān)于DE,CE,的方程組,解之即可得到DE=r.
如圖,連接O1D.
∵圓O1的切線AD交OC的延長線于點(diǎn)E,
∴O1D⊥AE,
由題意知,CO=AO=2r,O1D=O1C=r,
由切線長定理知,AD=AO=2r,
∴AO1=r,
由勾股定理得,AE2=AO2+OE2,
即(2r+DE)2=(2r)2+(2r+EC)2,①
O1E2=O1D2+DE2,
即(r+EC)2=r2+DE2,②
由①②解得,DE=r.
故填空答案:r;r.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知k是常數(shù),拋物線y=x2+(k2+k-6)x+3k的對稱軸是y軸,并且與x軸有兩個交點(diǎn).
(1)求k的值:
(2)若點(diǎn)P在拋物線y=x2+(k2+k-6)x+3k上,且P到y軸的距離是2,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料:思考的同學(xué)小斌在解決連比等式問題:“已知正數(shù),,滿足,求的值”時,采用了引入?yún)?shù)法,將連比等式轉(zhuǎn)化為了三個等式,再利用等式的基本性質(zhì)求出參數(shù)的值.進(jìn)而得出,,之間的關(guān)系,從而解決問題.過程如下:
解;設(shè),則有:
,,,
將以上三個等式相加,得.
,,都為正數(shù),
,即,.
.
仔細(xì)閱讀上述材料,解決下面的問題:
(1)若正數(shù),,滿足,求的值;
(2)已知,,,互不相等,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正方形ABCD邊上一點(diǎn),以O為圓心,OB為半徑畫圓與AD交于點(diǎn)E,過點(diǎn)E作⊙O的切線交CD于F,將△DEF沿EF對折,點(diǎn)D的對稱點(diǎn)D'恰好落在⊙O上.若AB=6,則OB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長城汽車銷售公司5月份銷售某種型號汽車,當(dāng)月該型號汽車的進(jìn)價為30萬元/輛,若當(dāng)月銷售量超過5輛時,每多售出1輛,所有售出的汽車進(jìn)價均降低0.1萬元/輛.根據(jù)市場調(diào)查,月銷售量不會突破30臺.
(1)設(shè)當(dāng)月該型號汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實際進(jìn)價為y萬元/輛,求y與x的函數(shù)關(guān)系式;
(2)已知該型號汽車的銷售價為32萬元/輛,公司計劃當(dāng)月銷售利潤45萬元,那么該月需售出多少輛汽車?(注:銷售利潤=銷售價﹣進(jìn)價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】車輛轉(zhuǎn)彎時,能否順利通過直角彎道的標(biāo)準(zhǔn)是:車輛是否可以行使到和路的邊界夾角是45°的位置(如圖1中②的位置),例如,圖2是某巷子的俯視圖,巷子路面寬4m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時,連接EF,交CD于點(diǎn)G,若GF的長度至少能達(dá)到車身寬度,則車輛就能通過.
(1)試說明長8m,寬3m的消防車不能通過該直角轉(zhuǎn)彎;
(2)為了能使長8m,寬3m的消防車通過該彎道,可以將轉(zhuǎn)彎處改為圓弧(分別是以O為圓心,以OM和ON為半徑的弧),具體方案如圖3,其中OM⊥OM′,請你求出ON的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級數(shù)學(xué)興趣小組為了測得該校地下停車場的限高CD,在課外活動時間測得下列數(shù)據(jù):如圖,從地面E點(diǎn)測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(diǎn)(與E點(diǎn)在同一個水平線)距停車場頂部C點(diǎn)(A、C、B在同一條直線上且與水平線垂直)1.2米.
(1)試求該校地下停車場的高度AC;
(2)求CD的高度,一輛高為6米的車能否通過該地下停車場(=1.73,結(jié)果精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于點(diǎn)A(﹣1,0),點(diǎn)B(3,0),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),連接AD,BD.
(1)直接寫出點(diǎn)C、D的坐標(biāo);
(2)求△ABD的面積;
(3)點(diǎn)P是拋物線上的一動點(diǎn),若△ABP的面積是△ABD面積的,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時針方向旋轉(zhuǎn)60°到△ABC的位置,連接C'B.
(1)求∠ABC'的度數(shù);
(2)求C'B的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com