【題目】某校一面墻前有一塊空地,校方準(zhǔn)備用長的柵欄()圍成一個(gè)一面靠墻的長方形花圍,再將長方形分割成六塊(如圖所示) ,已知,,設(shè)

1)用含的代數(shù)式表示:

2)當(dāng)長方形的面積等于時(shí),求的長.

3)若在如圖的甲區(qū)域種植花卉.乙區(qū)域種柏草坪,種柏花卉的成本為每平方米100元,種被草坪的成本為每平方米50元,若種植花卉與草坪的總費(fèi)用超過6300元,求花圍的寬的范圍.

【答案】1;(2AB的長為;(3)花圃的寬時(shí),總費(fèi)用超過 6300 元.

【解析】

1)根據(jù)矩形的性質(zhì)可得,根據(jù)柵欄的總長與矩形邊長的關(guān)系即可表示出,進(jìn)而表示出

2)先表示出長方形的邊長,利用長方形的面積公式列出方程,求解即可求得AB的長;

3)先求出甲區(qū)域和乙區(qū)域的面積,設(shè)總費(fèi)用為元,依題意列出y關(guān)于x的關(guān)系式,利用二次函數(shù)的性質(zhì)求解不等式,即可求得花圍的寬的范圍.

解:(1)∵四邊形是矩形,

,

由題意得:

,

,則,

∴四邊形是平行四邊形,

,

∴四邊形是矩形,

,

∴四邊形是正方形,則,

同理得:∴四邊形是正方形,則,

故答案為:;

2)∵,

由題意可得:

解得:,

的長為;

3)甲區(qū)域的面積,

乙區(qū)域的面積=,

設(shè)總費(fèi)用為元,由題意得:

,

整理得:

,即,

解得:,

由二次函數(shù)的圖象與性質(zhì)可得:當(dāng) 時(shí),,

∴花圃的寬時(shí),總費(fèi)用超過 6300 元.

答:若種植花卉與草坪的總費(fèi)用超過6300元,花圍的寬的范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為( 。

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC為等邊三角形,點(diǎn)A的坐標(biāo)為(04),點(diǎn)Bx軸上,點(diǎn)C在反比例函數(shù)的圖象上,則點(diǎn)B的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濟(jì)寧某校為了解九年級學(xué)生藝術(shù)測試情況.以九年極(1)班學(xué)生的藝術(shù)測試成績?yōu)闃颖荆?/span>、、四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請你結(jié)合圖中所給信息解答下列問題:

(說明:級:90~100分;級:75~89分;60~74分;級:60分以下)

1)此次抽樣共調(diào)查了多少名學(xué)生?

2)請求出樣本中級的學(xué)生人數(shù),井補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校九年級有1000名學(xué)生,請你用此樣本估計(jì)藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個(gè)邊長為4的正方形分割成如圖所示的9部分,其中,,全等,,,也全等,中間小正方形的面積與面積相等,且是以為底的等腰三角形,則的面積為(

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線的頂點(diǎn)為點(diǎn),與軸的負(fù)半軸交于點(diǎn),直線交拋物線W于另一點(diǎn),點(diǎn)的坐標(biāo)為

1)求直線的解析式;

2)過點(diǎn)軸,交軸于點(diǎn),若平分,求拋物線W的解析式;

3)若,將拋物線W向下平移個(gè)單位得到拋物線,如圖2,記拋物線的頂點(diǎn)為,與軸負(fù)半軸的交點(diǎn)為,與射線的交點(diǎn)為.問:在平移的過程中,是否恒為定值?若是,請求出的值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線 為常數(shù))與軸交于點(diǎn)軸交于點(diǎn),點(diǎn)為拋物線頂點(diǎn).

(Ⅰ)當(dāng)時(shí),求點(diǎn),點(diǎn)的坐標(biāo);

(Ⅱ)①若頂點(diǎn)在直線上時(shí),用含有的代數(shù)式表示

②在①的前提下,當(dāng)點(diǎn)的位置最高時(shí),求拋物線的解析式;

(Ⅲ)若,當(dāng)滿足值最小時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將拋物線y=﹣x2平移后經(jīng)過點(diǎn)A(﹣1,0)、B40),且平移后的拋物線與y軸交于點(diǎn)C(如圖).

1)求平移后的拋物線的表達(dá)式;

2)如果點(diǎn)D在線段CB上,且CD,求∠CAD的正弦值;

3)點(diǎn)Ey軸上且位于點(diǎn)C的上方,點(diǎn)P在直線BC上,點(diǎn)Q在平移后的拋物線上,如果四邊形ECPQ是菱形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了從小華和小亮兩人中選拔一人參加射擊比賽,現(xiàn)對他們的射擊水平進(jìn)行測試,兩人在相同條件下各射擊6次,命中的環(huán)數(shù)如下(單位:環(huán)):

小華:7,87,8,9,9 小亮:5,8,7,8,1010

1)填寫下表:

平均數(shù)(環(huán))

中位數(shù)(環(huán))

方差(環(huán)2

小華

8

小亮

8

3

2)根據(jù)以上信息,你認(rèn)為教練會(huì)選擇誰參加比賽,理由是什么?

3)若小亮再射擊2次,分別命中7環(huán)和9環(huán),則小亮這8次射擊成績的方差 .(填變大變小、不變

查看答案和解析>>

同步練習(xí)冊答案