復(fù)習(xí)“全等三角形”的知識(shí)時(shí),老師布置了一道作業(yè)題:“如圖①,已知,在△ABC中,AB=AC,P是△ABC中內(nèi)任意一點(diǎn),將AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至AQ,使∠QAP=∠BAC,連結(jié)BQ、CP則BQ=CP.”

小亮是個(gè)愛(ài)動(dòng)腦筋的同學(xué),他通過(guò)對(duì)圖①的分析,證明了△ABC≌△ACP,從而證得BQ=CP.之后,他將點(diǎn)P移到等腰三角形ABC外,原題中其它條件不變,發(fā)現(xiàn)“BQ=CP”仍然成立,請(qǐng)你就圖②給出證明.

答案:
解析:

  證明:∵∠QAP=∠BAC

  ∴∠QAP+∠PAB=∠PAB+∠BAC

  即∠QAB=∠PAC 4分

  在△ABQ和△ACP中

  AQ=AP

  ∠QAB=∠PAC

  AB=AC


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、復(fù)習(xí)“全等三角形”的知識(shí)時(shí),老師布置了一道作業(yè)題:“如下圖①,已知在△ABC中,AB=AC,P是△ABC內(nèi)部任意一點(diǎn),將AP繞A順時(shí)針旋轉(zhuǎn)至AQ,使得∠QAP=∠BAC,連接BQ、CP,則BQ=CP.”
(1)小亮是個(gè)愛(ài)動(dòng)腦筋的同學(xué),他通過(guò)對(duì)圖①的分析,證明了△ABQ≌△ACP,從而證得BQ=CP.請(qǐng)你幫小亮完成證明.
(2)之后,小亮又將點(diǎn)P移到等腰三角形ABC之外,原題中的條件不變,“BQ=CP”仍然成立嗎?若成立,請(qǐng)你就圖②給出證明.若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南湖區(qū)二模)在特殊四邊形的復(fù)習(xí)課上,王老師出了這樣一道題:
如圖1,在?ABCD中,E、F、G、H分別為AB,BC,CD,DA邊上的動(dòng)點(diǎn),連接EG,HF相交于點(diǎn)O,且∠HOE=∠ADC,若AB=a,AD=b,試探究:EG與FH的數(shù)量關(guān)系.
經(jīng)過(guò)小組討論后,小聰建議分以下三步進(jìn)行,請(qǐng)你解答:
(1)特殊情況,探索結(jié)論
當(dāng)?ABCD是邊長(zhǎng)為a的正方形時(shí)(如圖2),請(qǐng)寫出EG與FH的數(shù)量關(guān)系(不必證明);
(2)嘗試變題,再探思路
當(dāng)?ABCD是邊長(zhǎng)為a的菱形時(shí)(如圖3),EG與FH又有怎樣的數(shù)量關(guān)系呢?
小聰想:要求EG與FH的數(shù)量關(guān)系,就要構(gòu)成全等三角形或相似三角形,于是,分別過(guò)點(diǎn)G、H作GM⊥AB于點(diǎn)M,HN⊥BC于點(diǎn)N,在△HNF和△GME中,有∠GME=∠HNF=Rt∠,由菱形面積與性質(zhì)可得GM=HN,能否從已知條件得到∠MGE=∠NHF呢?請(qǐng)你根據(jù)小聰?shù)乃悸吠瓿山獯疬^(guò)程;
(3)特例啟發(fā),解答題目
猜想:原題中EG與FH的數(shù)量關(guān)系是
EG
FH
=
b
a
EG
FH
=
b
a
,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北京期中題 題型:證明題

復(fù)習(xí)“全等三角形”的知識(shí)時(shí),老師布置了一道作業(yè)題:“如下圖①,已知在△ABC中,AB=AC,P是△ABC內(nèi)部任意一點(diǎn),將AP繞A順時(shí)針旋轉(zhuǎn)至AQ,使得∠QAP=∠BAC,連接BQ、CP,則BQ=CP.”
(1)小亮是個(gè)愛(ài)動(dòng)腦筋的同學(xué),他通過(guò)對(duì)圖①的分析,證明了△ABQ≌△ACP,從而證得BQ=CP.請(qǐng)你幫小亮完成證明.
(2)之后,小亮又將點(diǎn)P移到等腰三角形ABC之外,原題中的條件不變,“BQ=CP”仍然成立嗎?若成立,請(qǐng)你就圖②給出證明.若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

復(fù)習(xí)“全等三角形”的知識(shí)時(shí),老師布置了一道作業(yè)題:“如下圖①,已知在△ABC中,AB=AC,P是△ABC內(nèi)部任意一點(diǎn),將AP繞A順時(shí)針旋轉(zhuǎn)至AQ,使得∠QAP=∠BAC,連接BQ、CP,則BQ=CP。”

           

(1)小亮是個(gè)愛(ài)動(dòng)腦筋的同學(xué),他通過(guò)對(duì)圖①的分析,證明了△ABQ≌△ACP,從而證得BQ=CP。請(qǐng)你幫小亮完成證明。

(2)之后,小亮又將點(diǎn)P移到等腰三角形ABC之外,原題中的條件不變,“BQ=CP”仍然成立嗎?若成立,請(qǐng)你就圖②給出證明。若不成立,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年北京市八一中學(xué)九年級(jí)(上)期中數(shù)學(xué)模擬試卷(解析版) 題型:解答題

復(fù)習(xí)“全等三角形”的知識(shí)時(shí),老師布置了一道作業(yè)題:“如下圖①,已知在△ABC中,AB=AC,P是△ABC內(nèi)部任意一點(diǎn),將AP繞A順時(shí)針旋轉(zhuǎn)至AQ,使得∠QAP=∠BAC,連接BQ、CP,則BQ=CP.”
(1)小亮是個(gè)愛(ài)動(dòng)腦筋的同學(xué),他通過(guò)對(duì)圖①的分析,證明了△ABQ≌△ACP,從而證得BQ=CP.請(qǐng)你幫小亮完成證明.
(2)之后,小亮又將點(diǎn)P移到等腰三角形ABC之外,原題中的條件不變,“BQ=CP”仍然成立嗎?若成立,請(qǐng)你就圖②給出證明.若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案