【題目】閱讀材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值. 解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根據你的觀察,探究下面的問題:
(1)a2+b2﹣4a+4=0,則a= . b= .
(2)已知x2+2y2﹣2xy+6y+9=0,求xy的值.
(3)已知△ABC的三邊長a、b、c都是正整數,且滿足2a2+b2﹣4a﹣6b+11=0,求△ABC的周長.
【答案】
(1)2;0
(2)解:∵x2+2y2﹣2xy+6y+9=0,
∴x2+y2﹣2xy+y2+6y+9=0,
即(x﹣y)2+(y+3)2=0,
則x﹣y=0,y+3=0,
解得:x=y=﹣3,
∴xy=(﹣3)﹣3=﹣ ;
(3)解:∵2a2+b2﹣4a﹣6b+11=0,
∴2a2﹣4a+2+b2﹣6b+9=0,
∴2(a﹣1)2+(b﹣3)2=0,
則a﹣1=0,b﹣3=0,
解得:a=1,b=3,
由三角形三邊關系可知,三角形三邊分別為1、3、3,
則△ABC的周長為1+3+3=7.
【解析】解:(1)已知等式整理得:(a﹣2)2+b2=0, 解得:a=2,b=0;
所以答案是:2;0;
【考點精析】解答此題的關鍵在于理解因式分解的應用的相關知識,掌握因式分解是整式乘法的逆向變形,可以應用與數字計算、求值、整除性問題、判斷三角形的形狀、解方程.
科目:初中數學 來源: 題型:
【題目】在數學中,為了書寫簡便,我們通常記 k=1+2+3+…+(n﹣1)+n,如 (x+k),=(x+1)+(x+2)+(x+3)+(x+4),則化簡 [(x﹣k)(x﹣k﹣1)]的結果是( )
A.3x2﹣15x+20
B.3x2﹣9x+8
C.3x2﹣6x﹣20
D.3x2﹣12x﹣9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:∠MON=80°,OE平分∠MON,點A、B、C分別是射線OM、OE、ON上的動點(A、B、C不與點O 重合),連接AC交射線OE于點D.設∠OAC=x°.
(1)如圖1,若AB∥ON,則∠ABO的度數是;
(2)如圖2,當∠BAD=∠ABD時,試求x的值(要說明理由);
(3)如圖3,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個相等的角?若存在,直接寫出x的值;若不存在,說明理由.(自己畫圖)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com