【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,1),B(﹣1,1),C(﹣1,﹣3),D(2,﹣3),點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿A﹣B﹣C﹣D﹣A…的規(guī)律在圖邊形ABCD的邊上循環(huán)運(yùn)動(dòng),則第2019秒時(shí)點(diǎn)P的坐標(biāo)為( )
A. (1,1)B. (0,1)C. (﹣1,1)D. (2,﹣1)
【答案】C
【解析】
由點(diǎn)可得ABCD是長(zhǎng)方形,點(diǎn)P從點(diǎn)A出發(fā)沿著A﹣B﹣C﹣D回到點(diǎn)A所走路程是14,即每過14秒點(diǎn)P回到A點(diǎn)一次,判斷2019÷14的余數(shù)就是可知點(diǎn)P的位置.
解:由點(diǎn)A(2,1),B(﹣1,1),C(﹣1,﹣3),D(2,﹣3),
可知ABCD是長(zhǎng)方形,
∴AB=CD=3,CB=AD=4,
∴點(diǎn)P從點(diǎn)A出發(fā)沿著A﹣B﹣C﹣D回到點(diǎn)A所走路程是:3+3+4+4=14,
∵2019÷14=144余3,
∴第2019秒時(shí)P點(diǎn)在B處,
∴P(﹣1,1)
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店以4元/千克的價(jià)格購(gòu)進(jìn)一批水果,由于銷售狀況良好,該店又再次購(gòu)進(jìn)同一種水果,第二次進(jìn)貨價(jià)格比第一次每千克便宜了0.5元,所購(gòu)水果重量恰好是第一次購(gòu)進(jìn)水果重量的2倍,這樣該水果店兩次購(gòu)進(jìn)水果共花去了2200元.
(1)該水果店兩次分別購(gòu)買了多少元的水果?
(2)在銷售中,盡管兩次進(jìn)貨的價(jià)格不同,但水果店仍以相同的價(jià)格售出,若第一次購(gòu)進(jìn)的水果有3%的損耗,第二次購(gòu)進(jìn)的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對(duì)七年級(jí)學(xué)生數(shù)學(xué)學(xué)期成績(jī)的評(píng)價(jià)規(guī)定如下:學(xué)期評(píng)價(jià)得分由期中測(cè)試成績(jī)(滿分150分)和期末測(cè)試成績(jī)(滿分150分)兩部分組成,其中期中測(cè)試成績(jī)占30%,期末測(cè)試成績(jī)占70%,當(dāng)學(xué)期評(píng)價(jià)得分大于或等于130分時(shí),該生數(shù)學(xué)學(xué)期成績(jī)?cè)u(píng)價(jià)為優(yōu)秀.(注:期中、期末成績(jī)分?jǐn)?shù)取整數(shù))
(1)小明的期中成績(jī)和期末測(cè)試成績(jī)兩項(xiàng)得分之和為260分,學(xué)期評(píng)價(jià)得分為132分,則小明期中測(cè)試成績(jī)和期末測(cè)試成績(jī)各得多少分?
(2)某同學(xué)期末測(cè)試成績(jī)?yōu)?/span>120分,他的綜合評(píng)價(jià)得分有可能達(dá)到優(yōu)秀嗎?為什么?
(3)如果一個(gè)同學(xué)學(xué)期評(píng)價(jià)得分要達(dá)到優(yōu)秀,他的期末測(cè)試成績(jī)至少要多少分(結(jié)果保留整數(shù))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程kx2-4x+2=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若ABC中,AB=AC=2,AB、BC的長(zhǎng)是方程kx2-4x+2=0的兩根,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD 的邊長(zhǎng)為4,E 為AB 上一點(diǎn),且AE=3 ,F 為BC 邊上的一個(gè)動(dòng)點(diǎn),連接EF ,以EF 為邊向左側(cè)作等腰直角三角形FEG ,EG=EF,∠GEF=90°,連接AG ,則AG 的最小值為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長(zhǎng)QC′交BA的延長(zhǎng)線于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長(zhǎng);
(3)當(dāng)BP=m,PC=n時(shí),求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(diǎn)(A在B左),y軸交于點(diǎn)C(0,-3).
(1)求拋物線的解析式;
(2)若點(diǎn)D是線段BC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以B、C、E、P為頂點(diǎn)且以BC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下表回答問題:
x | 16 | 16.1 | 16.2 | 16.3 | 16.4 | 16.5 | 16.6 | 16.7 | 16.8 |
x2 | 256 | 259.21 | 262.44 | 265.69 | 268.96 | 272.25 | 175.56 | 278.89 | 282.24 |
(1)272.25的平方根是
(2) = , = , =
(3)設(shè) 的整數(shù)部分為a,求﹣4a的立方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的頂點(diǎn)D、F分別在邊AC、BC上,易證:AD=BF(不需要證明);
探究:將圖①的正方形CDEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),連接AD、BF,其他條件不變,如圖②,求證:AD=BF;
應(yīng)用:若α=45°,CD=,BE=1,如圖③,則BF= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com