【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是矩形,OA=3,AB=4,將線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)A落在OC邊上的點(diǎn)E處,拋物線y=ax2+bx+c過A、E、B三點(diǎn).
(1)求拋物線的解析式;
(2)若M為拋物線的對稱軸上一動點(diǎn),當(dāng)△MBE的周長最小時(shí),求M點(diǎn)的坐標(biāo);
(3)點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿AB向B點(diǎn)運(yùn)動,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿BO向點(diǎn)O運(yùn)動.P點(diǎn)到達(dá)終點(diǎn)B時(shí),Q點(diǎn)同時(shí)停止運(yùn)動,運(yùn)動時(shí)間為t(秒).若△PBQ是等腰三角形,求的值.
【答案】(1)y=x2-4x+3(2)(2,1)(3)2, ,
【解析】試題分析:(1)先求出A、B、E三點(diǎn)坐標(biāo),再將A、B、E三點(diǎn)坐標(biāo)代入y=ax2+bx+c即可求得拋物線的解析式;(2)由題意可知:M為直線AE與對稱軸x=2的交點(diǎn)時(shí),△MBE的周長最小,先求出直線AE的解析式,進(jìn)而可求得點(diǎn)M的坐標(biāo);(3)根據(jù)題意,△DPQ為等腰三角形,可能有三種情形,需要分類討論:①若PD=PQ;②若PD=DQ;③若PQ=DQ.
試題解析:
(1)∵四邊形OABC是矩形,OA=3,AB=4,∴∠OAB=∠OCB=90°,OC=AB=4,CB=OA=3.又∵OE=OA=3,
∴A﹙0,3﹚,B﹙4,3﹚,E﹙3,0﹚∵拋物線y=ax2+bx+c經(jīng)過A,B,E三點(diǎn),∴
解之得:
∴拋物線的解析式為:y=x2-4x+3.
(2)∵y=x2-4x+3=(x-2)2-1,
∴拋物線的對稱軸為直線x=2.
∵點(diǎn)A,B關(guān)于直線x=2對稱,∴M為直線AE與對稱軸x=2的交點(diǎn)時(shí),ME+MB的值最小,而BE的長一定,此時(shí)△MBE的周長最小.
設(shè)直線AE的解析式為y=kx+m,則有
解得 ∴y=-x+3.
當(dāng)x=2時(shí),y=1,
∴M點(diǎn)的坐標(biāo)為(2,1)
(3)①若BP=BQ,則4-t=t,t=2
②若QP=QB,作QD⊥AB于D,則BD=(4-t),
由(4-t):4=t:5得t=
③若QP=PB,作PE⊥QB于E,則BE=t,
由(4-t):5=t:4得t=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn)A(﹣5,y1),B(3,y2)均在拋物線y=ax2+bx+c(a≠0)上,點(diǎn)C(x0,y0)是該拋物線的頂點(diǎn).若y1<y2≤y0,則x0的取值范圍是( 。
A. x0>﹣1B. x0>﹣5C. x0<﹣1D. ﹣2<x0<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某開發(fā)區(qū)去年出口創(chuàng)匯額為25億美元,今年達(dá)到30.55億美元,已知今年上半年出口創(chuàng)匯額比去年同期增長18%,下半年比去年同期增長25%,求去年上半年和下半年的出口創(chuàng)匯額各是多少億美元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,AD⊥BC,EF⊥BC,∠BEF=∠ADG. 求證:DG∥AB.把證明的過程填寫完整.
證明:因?yàn)锳D⊥BC,EF⊥BC(已知),
所以∠EFB=∠ADB=90°()
所以EF∥()
所以∠BEF=()
因?yàn)椤螧EF=∠ADG(已知)
所以()
所以DG∥AB()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)化簡:2a(a+b)﹣(a+b)2
(2)如圖,O為矩形ABCD對角線的交點(diǎn),DE∥AC,CE∥BD.試判斷四邊形OCED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(1,2)關(guān)于原點(diǎn)的對稱點(diǎn)P′的坐標(biāo)為( )
A.(2,1)
B.(﹣1,﹣2)
C.(1,﹣2)
D.(﹣2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點(diǎn)A表示的數(shù)是﹣3,把點(diǎn)A向右移動5個(gè)單位,然再向左移動7個(gè)單位到A′,則A′表示的數(shù)是( 。
A. ﹣5 B. ﹣6 C. ﹣7 D. ﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點(diǎn)A,B表示的數(shù)分別是5、﹣3,它們之間的距離可以表示為( )
A.﹣3+5
B.﹣3﹣5
C.|﹣3+5|
D.|﹣3﹣5|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的頂點(diǎn)A,B,D的坐標(biāo)分別是(0,0)、(5,0)、(2,3),則頂點(diǎn)C的坐標(biāo)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com