【題目】如圖①、圖②,在給定的一張矩形紙片上作一個(gè)正方形,甲、乙兩人的作法如下:

甲:以點(diǎn)A為圓心,AD長(zhǎng)為半徑畫(huà)弧,交AB于點(diǎn)E,以點(diǎn)D為圓心,AD長(zhǎng)為半徑畫(huà)弧,交CD于點(diǎn)F,連接EF,則四邊形AEFD即為所求;

乙:作∠DAB的平分線,交CD于點(diǎn)M,同理作∠ADC的平分線,交AB于點(diǎn)N,連接MN,則四邊形ADMN即為所求.

對(duì)于以上兩種作法,可以做出的判定是(  )

A.甲正確,乙錯(cuò)誤B.甲、乙均正確

C.乙正確,甲錯(cuò)誤D.甲、乙均錯(cuò)誤

【答案】B

【解析】

由一組鄰邊相等的矩形是正方形可知甲正確,由對(duì)角線互相垂直平分且相等的四邊形是正方形可知乙正確.

解:由甲的作圖可知,

四邊形ABCD是矩形

四邊形AEFD是矩形

四邊形AEFD是正方形,甲正確;

如圖,AMDN交于點(diǎn)O,

四邊形ABCD是矩形

是∠DAB的平分線,是∠ADC的平分線,

,即

同理可證

AMDN互相平分

四邊形AEFD是正方形,乙正確.

所以甲乙的均正確.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC≌△ADE,∠DAC70°,∠BAE100°,BCDE相交于點(diǎn)F,則∠DFB度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:平面直角坐標(biāo)系中,A(a,3)、B(b,6)、C(c,1),a、bc都為實(shí)數(shù),并且滿足3b-5c=-2a-18,4bc=3a+10

(1) 請(qǐng)直接用含a的代數(shù)式表示bc

(2) 當(dāng)實(shí)數(shù)a變化時(shí),判斷ABC的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍

(3) 當(dāng)實(shí)數(shù)a變化時(shí),若線段ABy軸相交,線段OB與線段AC交于點(diǎn)P,且SPABSPBC,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有依次排列的三個(gè)數(shù):,,對(duì)這三個(gè)數(shù)作如下操作:對(duì)任何相鄰的兩個(gè)數(shù),都用左邊的數(shù)減去右邊的數(shù),將所得之差寫(xiě)在這兩個(gè)數(shù)之間,即可產(chǎn)生一個(gè)新數(shù)串:“2,7,-5,-13,8”稱為第一次操作;做第二次同樣的操作后又產(chǎn)生一個(gè)新數(shù)串:“2,-5,7,12,-5,8,-13,-21,8”……依次繼續(xù)操作下去,直到第次操作后停止操作.則第次操作所得新數(shù)串中所有各數(shù)的和為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在數(shù)軸上點(diǎn)A,點(diǎn)B對(duì)應(yīng)的數(shù)分別是6,﹣6,∠DCE90°(點(diǎn)C與點(diǎn)O重合,點(diǎn)D在數(shù)軸的正半軸上)

1)如圖1,若CF平分∠ACE,則∠AOF   度;點(diǎn)A與點(diǎn)B的距離= 

2)如圖2,將∠DCE沿?cái)?shù)軸的正半軸向右平移t0t3)個(gè)單位后,再繞點(diǎn)頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時(shí)記∠DCFα

當(dāng)t1時(shí),α   ;點(diǎn)B與點(diǎn)C的距離= 

猜想BCEα的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖3,開(kāi)始∠D1C1E1與∠DCE重合,將∠DCE沿?cái)?shù)軸的正半軸向右平移t0t3)個(gè)單位,再繞點(diǎn)頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時(shí)記∠DCFα,與此同時(shí),將∠D1C1E1沿?cái)?shù)軸的負(fù)半軸向左平移t0t3)個(gè)單位,再繞點(diǎn)頂點(diǎn)C1順時(shí)針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1β,若αβ滿足β|20°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年年初,我國(guó)爆發(fā)新冠肺炎疫情,某省鄰近縣市 C、D 獲知 AB 兩市分別急需救援物資 200噸和 300 噸的消息后,決定調(diào)運(yùn)物資支援.已知 C 市有救援物資 240 噸,D 市有救援物資 260 噸,現(xiàn)將這些救援物資全部調(diào)往 A、B 兩市.已知從 C 市運(yùn)往 A、B 兩市的費(fèi)用分別為每噸 20 元和 25 元,從D 市運(yùn)往往 A、B 兩市的費(fèi)用分別為每噸 15 元和 30 元,設(shè)從 C 市運(yùn)往 A 市的救援物資為 x 噸.

1 請(qǐng)?zhí)顚?xiě)下表;

A

B

合計(jì)(噸)

C

x

_____

240

D

_____

_____

260

總計(jì)(噸)

200

300

500

2)設(shè) CD 兩市的總運(yùn)費(fèi)為 W 元,則 W x 之間的函數(shù)關(guān)系式為_________,其中自變量 x的取值范圍是________

3)經(jīng)過(guò)搶修,從 C 市到 B 市的路況得到了改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少 n 元(n10),其余路線運(yùn)費(fèi)不變,若 C、D 兩市的總運(yùn)費(fèi)的最小值不小于 7920 元,則 n 的取值范圍是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線l分別交ABCDE、F兩點(diǎn),且ABCD

1 說(shuō)明:∠1=∠2

2 如圖2,點(diǎn)MNAB、CD之間,且在直線l左側(cè),若EMN+∠FNM=260°,

求:AEM+∠CFN的度數(shù);

如圖3,若EP平分AEM,FP平分CFN,求P的度數(shù);

3 如圖4,∠2=80°,點(diǎn)G在射線EB上,點(diǎn)HAB上方的直線l上,點(diǎn)Q是平面內(nèi)一點(diǎn),連接QG、QH,若AGQ=18°,FHQ=24°,直接寫(xiě)出GQH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,連接BC.

(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)P為線段BC上一點(diǎn)(不與B,C重合),PM∥y軸,且PM交拋物線于點(diǎn)M,交x軸于點(diǎn)N,當(dāng)△BCM的面積最大時(shí),求△BPN的周長(zhǎng);
(3)在(2)的條件下,當(dāng)△BCM的面積最大時(shí),在拋物線的對(duì)稱軸上存在一點(diǎn)Q,使得△CNQ為直角三角形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題 1、化簡(jiǎn)
2、若一次函數(shù)y=kx+b經(jīng)過(guò)點(diǎn)A(3,4)、B(4,5),求這一次函數(shù)的解析式.
(1)先化簡(jiǎn),再求值: ÷(2+
(2)若一次函數(shù)y=kx+b經(jīng)過(guò)點(diǎn)A(3,4)、B(4,5),求這一次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案