【題目】如圖①所示,空圓柱形容器內(nèi)放著一個實(shí)心的“柱錐體”(由一個圓柱和一個同底面的圓錐組成的幾何體).現(xiàn)向這個容器內(nèi)勻速注水,水流速度為5cm3/s,注滿為止.已知整個注水過程中,水面高度h(cm)與注水時間t(s)之間的關(guān)系如圖②所示.請你根據(jù)圖中信息,解答下列問題:
(1)圓柱形容器的高為cm,“柱錐體”中圓錐體的高為cm;
(2)分別求出圓柱形容器的底面積與“柱錐體”的底面積.
【答案】
(1)12;3
(2)解:設(shè)圓柱形容器的底面積為S,
則S(12﹣8)=(42﹣26)×5,
解得,S=20,
設(shè)“柱錐體”的底面積為S柱錐,
S柱錐×5=20×5﹣15×5,
解得,S柱錐=5,
即圓柱形容器的底面積是20cm2,“柱錐體”的底面積是5cm2
【解析】解:(1)由題意和函數(shù)圖象可得,圓柱容器的高為12cm,“柱錐體”中圓錐體的高為:8﹣5=3cm,故答案為:12,3;(1)根據(jù)函數(shù)圖象可以直接得到圓柱形容器的高和“柱錐體”中圓錐體的高;(2)根據(jù)題意和函數(shù)圖象可以求得圓柱形容器的底面積與“柱錐體”的底面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+2經(jīng)過A(﹣1,0),B(2,0),C三點(diǎn).直線y=mx+ 交拋物線于A,Q兩點(diǎn),點(diǎn)P是拋物線上直線AQ上方的一個動點(diǎn),作PF⊥x軸,垂足為F,交AQ于點(diǎn)N.
(1)求拋物線的解析式;
(2)如圖①,當(dāng)點(diǎn)P運(yùn)動到什么位置時,線段PN=2NF,求出此時點(diǎn)P的坐標(biāo);
(3)如圖②,線段AC的垂直平分線交x軸于點(diǎn)E,垂足為D,點(diǎn)M為拋物線的頂點(diǎn),在直線DE上是否存在一點(diǎn)G,使△CMG的周長最小?若存在,請求出點(diǎn)G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:甲、乙兩車分別從相距300千米的 A,B兩地同時出發(fā)相向而行,其中甲到 B地后立即返回,下圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象.
(1)求甲車離出發(fā)地的距離 y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)它們行駛到與各自出發(fā)地的距離相等時,用了 小時,求乙車離出發(fā)地的距離 y(千米)與行駛時間 x(小時)之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間有技術(shù)工人85人,平均每天每人可加工甲種部件16個或乙種部件10個,2個甲種部件和3個乙種部件配成一套,問加工甲、乙兩種部件各安排多少人才能使每天加工的兩種部件剛好配套?并求出加工了多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,已知∠B和∠C的平分線相交于點(diǎn)F,經(jīng)過點(diǎn)F作DE//BC,交AB于D,交AC于點(diǎn)E,若BD+CE=9,則線段DE的長為( )
A. 9 B. 8 C. 7 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD、分別是銳角三角形ABC和銳角三角形中BC、邊上的高,且、.若使△ABC≌△,請你補(bǔ)充條件_________.(填寫一個你認(rèn)為適當(dāng)?shù)臈l件即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線a∥b,直角三角形如圖放置,若∠1+∠A=65°,則∠2的度數(shù)為( )
A.15°
B.20°
C.25°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),AD與BE相交于點(diǎn)點(diǎn)F,G分別是線段AO,
BO的中點(diǎn).
求證:四邊形DEFG是平行四邊形;
如圖2,連接CO,若,求證:四邊形DEFG是菱形;
在的前提下,當(dāng)滿足什么條件時,四邊形DEFG能成為正方形?直接回答即可,不必證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】青運(yùn)會開幕式前,福州市公路檢修組乘汽車沿公路檢修線路,約定向東為正,向西為負(fù).某天自A地出發(fā), 到收工時,行走記錄為(單位:千米):
+8、-9、+4、+7、-2、-10、-3、-3、+7、+5
回答下列問題:
(1)收工時在A地的哪邊?距A地多少千米? 并用數(shù)軸表示收工地點(diǎn);
(2)若每千米耗油0.3升,問從A地出發(fā)到收工時,共耗油多少升?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com