(1)先求解下列兩題:

①如圖①,點(diǎn)B,D在射線AM上,點(diǎn)C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);
②如圖②,在直角坐標(biāo)系中,點(diǎn)A在y軸正半軸上,AC∥x軸,點(diǎn)B,C的橫坐標(biāo)都是3,且BC=2,點(diǎn)D在AC上,且橫坐標(biāo)為1,若反比例函數(shù) (x>0)的圖象經(jīng)過點(diǎn)B,D,求k的值.
(2)解題后,你發(fā)現(xiàn)以上兩小題有什么共同點(diǎn)?請(qǐng)簡(jiǎn)單地寫出.

(1)①21°  ②k=3  (2)用已知的量通過關(guān)系去表達(dá)未知的量,使用轉(zhuǎn)換的思維和方法.

解析解:(1)①∵AB=BC=CD=DE,
∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,
根據(jù)三角形的外角性質(zhì),∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,
又∵∠EDM=84°,
∴∠A+3∠A=84°,
解得,∠A=21°;
②∵點(diǎn)B在反比例函數(shù)y=圖象上,點(diǎn)B,C的橫坐標(biāo)都是3,
∴點(diǎn)B(3,),
∵BC=2,
∴點(diǎn)C(3,+2),
∵AC∥x軸,點(diǎn)D在AC上,且橫坐標(biāo)為1,
∴A(1,+2),
∵點(diǎn)A也在反比例函數(shù)圖象上,
+2=k,
解得,k=3;
(2)用已知的量通過關(guān)系去表達(dá)未知的量,使用轉(zhuǎn)換的思維和方法.(開放題)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

已知雙曲線經(jīng)過點(diǎn)(-1,2),那么k的值等于       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線y=x+1與y軸交于A點(diǎn),與反比列函數(shù)y=(x>0)的圖象交于點(diǎn)M,過M作MH⊥x,且tan∠AHO=
(1)求k的值;
(2)設(shè)點(diǎn)N(1,a)是反比例函數(shù)y=(x>0)圖像上的點(diǎn),在y軸上是否存在點(diǎn)P,使得PM+PN最小,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,其中A(-4,0),B(2,0),C(3,3),反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C.

(1)求此反比例函數(shù)的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形AD′C′B,請(qǐng)你通過計(jì)算說(shuō)明點(diǎn)D′在雙曲線上;
(3)請(qǐng)你畫出△AD′C,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示是某一蓄水池的排水速度h)與排完水池中的水所用的時(shí)間t(h)之間的函數(shù)關(guān)系圖象.

(1)請(qǐng)你根據(jù)圖象提供的信息求出此蓄水池的蓄水量;
(2)寫出此函數(shù)的解析式;
(3)若要6 h排完水池中的水,那么每小時(shí)的排水量應(yīng)該是多少?
(4)如果每小時(shí)排水量是,那么水池中的水要用多少小時(shí)排完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,P1是反比例函數(shù)在第一象限圖象上的一點(diǎn),已知△P1O A1為等邊三角形,點(diǎn)A1的坐標(biāo)為(2,0).

(1)直接寫出點(diǎn)P1的坐標(biāo);
(2)求此反比例函數(shù)的解析式;
(3)若△P2A1A2為等邊三角形,求點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系的第一象限中,有一各邊所在直線均平行于坐標(biāo)軸的矩形ABCD,且點(diǎn)A在反比例函數(shù)L1:y= (x>0) 的圖象上,點(diǎn)C在反比例函數(shù)L2:y= (x>0) 的圖象上(矩形ABCD夾在L1與L2之間).(1)若點(diǎn)A坐標(biāo)為(1,1)時(shí),則L1的解析式為              .(2)在(1)的條件下,若矩形ABCD是邊長(zhǎng)為1的正方形,求L2的解析式.(3)若k1=1,k2=6,且矩形ABCD的相鄰兩邊分別為1和2,求符合條件的頂點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線,經(jīng)過點(diǎn)P(,),點(diǎn)P關(guān)于軸的對(duì)稱點(diǎn)P′在反比例函數(shù))的圖象上.

(1)求的值;
(2)直接寫出點(diǎn)P′的坐標(biāo);
(3)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函數(shù)的圖象經(jīng)過點(diǎn)C.

(1)求此反比例函數(shù)的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形AD′C′B,請(qǐng)你通過計(jì)算說(shuō)明點(diǎn)D′在雙曲線上;
(3)請(qǐng)你畫出△AD′C,并求出它的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案