【題目】圖a.圖b均為邊長(zhǎng)等于1的正方形組成的網(wǎng)格.
(1)在圖a空白的方格中,畫(huà)出陰影部分的圖形沿虛線AB翻折后的圖形,并算出原來(lái)陰影部分的面積.(直接寫(xiě)出答案)
(2)在圖b空白的方格中,畫(huà)出陰影部分的圖形向右平移2個(gè)單位,再向上平移1個(gè)單位后的圖形,并判斷原來(lái)陰影部分的圖形是什么三角形?(直接寫(xiě)出答案)

【答案】
(1)解:如圖a所示:陰影部分的面積為:2×3﹣ ×2×2﹣ ×1×3﹣ ×1×1=2;


(2)解:如圖b所示:陰影部分是等腰直角三角形
【解析】(1)直接利用軸對(duì)稱(chēng)圖形的性質(zhì)得出答案,再利用三角形所在矩形面積減去周?chē)切蚊娣e進(jìn)而得出答案;(2)直接利用平移的性質(zhì)得出答案,再利用勾股定理逆定理可得出答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)勾股定理的逆定理的理解,了解如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式的規(guī)律,解答下列問(wèn)題:

a1=,a2=),a3=),a4=),…….

(1)第5個(gè)等式為   ;第n個(gè)等式為   (用含n的代數(shù)式表示,n為正整數(shù));

(2)設(shè)S1=a1﹣a2,S2=a3﹣a4,S3=a5﹣a6,……,S1008=a2015﹣a2016.求S1+S2+S3+……+S1008的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P(1,0).點(diǎn)P第1次向上跳動(dòng)1個(gè)單位至點(diǎn)P1(1,1),緊接著第2次向左跳動(dòng)2個(gè)單位至點(diǎn)P2(-1,1),第3次向上跳動(dòng)1個(gè)單位至點(diǎn)P3,第4次向右跳動(dòng)3個(gè)單位至點(diǎn)P4,第5次又向上跳動(dòng)1個(gè)單位至點(diǎn)P5,第6次向左跳動(dòng)4個(gè)單位至點(diǎn)P6,…….照此規(guī)律,點(diǎn)P第100次跳動(dòng)至點(diǎn)P100的坐標(biāo)是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果100個(gè)乒乓球中有20個(gè)紅色的,那么在隨機(jī)抽出的20個(gè)乒乓球中(
A.剛好有4個(gè)紅球
B.紅球的數(shù)目多于4個(gè)
C.紅球的數(shù)目少于4個(gè)
D.以上都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形ABCD,點(diǎn)M,N分別在邊AD和邊BC上,點(diǎn)EF在線段BD上,且AM=CN,DF=BE.求證:

1∠DFM=∠BEN;

2)四邊形MENF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=3,將ABD沿對(duì)角線BD對(duì)折,得到EBD,DEBC交于點(diǎn) FADB=30°,則EF=---------------------------------------------( )

A. 3 B. 2 C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一幅三角板疊在一起,使直角的頂點(diǎn)重合于點(diǎn)O,則的值為( 。

A. 小于180° B. 等于180° C. 大于180° D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線相交于點(diǎn),的平分線,,.

(1)圖中除直角外,還有相等的角嗎?請(qǐng)寫(xiě)出兩對(duì):①   ;②  

(2)如果,則① ;②

(3)相等嗎?   ,理由是   

(4)如果,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是O的直徑,點(diǎn)C在O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.

(1)求證:PC是O的切線;
(2)求證:BC= AB;
(3)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN·MC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案