【題目】如圖,點D是△ABC的邊AB上一點,點EAC的中點,過點CCFABDE延長線于點F

1)求證:ADCF

2)連接AF,CD,求證:四邊形ADCF為平行四邊形.

【答案】1)詳見解析;(2)詳見解析.

【解析】

1)根據(jù)CFAB就可以得出∠A=∠ECF,∠ADE=∠F,證明△ADE≌△CFE就可以求出結論;

2)由△ADE≌△CFE就可以得出DEFE,又有AECE于是就得出結論.

解:(1)證明:∵CFAB,

∴∠ADE=∠F,∠FCE=∠A

∵點EAC的中點,

AEEC

∵在△ADE和△CFE中,

,

∴△ADE≌△CFEAAS).

ADCF

2)∵△ADE≌△CFE,

DEFE

AEEC,

∴四邊形ADCF為平行四邊形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC 中,BAC=90°,分別以 AC BC 為邊向外作正方形 ACFG 和正方形 BCDE,過點 D FC 的延長線的垂線,垂足為點 H

(1)求證:ABC≌△HDC;

(2)連接 FD AC 的延長線于點 M, AG ,tanABCFCM 的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李航想利用太陽光測量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設計了一種測量方案,具體測量情況如下:如示意圖,李航邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點A、E、C在同一直線上).已知李航的身高EF1.6m,請你幫李航求出樓高AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線、軸分別交于、兩點.點為線段的中點.過點作直線軸于點

(1)直接寫出的坐標;

(2)如圖1,點是直線上的動點,連接、,線段在直線上運動,記為,點軸上的動點,連接點、,當取最大時,求的最小值;

(3)如圖2,在軸正半軸取點,使得,以為直角邊在軸右側作直角,,且,作的角平分線,將沿射線方向平移,點、平移后的對應點分別記作、,當的點恰好落在射線上時,連接,,將繞點沿順時針方向旋轉后得,在直線上是否存在點,使得為等腰三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點C在半圓上,過點C的切線交BA的延長線于點D,CD=CB,CEAB交半圓于點E.

(1)求∠D的度數(shù);

(2)求證:以點C,O,B,E為頂點的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐 問題情境:

綜合與實踐課上,同學們以“三角形紙片的折疊與旋轉“為主題展開數(shù)學活動,探究有關的數(shù)學問題.

動手操作:

已知:三角形紙片中,.將三角形紙片按如下步驟進行操作:

第一步:如圖1,折疊三角形紙片,使點與點重合,然后展開鋪平,折痕分別交于點,連接,易知

第二步:在圖1的基礎上,將三角形紙片沿剪開,得到.保持的位置不變,將繞點逆時針旋轉得到(分別是的對應點),旋轉角為問題解決:

1)如圖2,小彬畫出了旋轉角時的圖形,設線段交于點,連接.小彬發(fā)現(xiàn)所在直線始終垂直平分線段.請證明這一結論;

2)如圖3,小穎畫出了旋轉角時的圖形,設直線與直線相交于點,連接判斷此時的形狀,說明理由;

3)在繞點逆時針旋轉過程中,當時,請直接寫出兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校與圖書館在同一條筆直道路上,甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關系如圖所示.其中說法正確的是(

A.甲的速度是60/分鐘B.乙的速度是80/分鐘

C.的坐標為D.線段所表示的函數(shù)表達式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角邊長為的等腰直角三角形與邊長為3的等邊三角形在同一水平線上,等腰直角三角形沿水平線從左向右勻速穿過等邊三角形時,設穿過時間為t,兩圖形重合部分的面積為S,則S關于t的圖象大致為( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案