【題目】如圖,在菱形ABCD中,AC、BD相交于點(diǎn)O,E為AB的中點(diǎn),且DE⊥AB,若AC=6,則DE的長(zhǎng)為( 。
A. 3 B. 3 C. 2 D. 4
【答案】A
【解析】
根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AD=BD,再根據(jù)菱形的四條邊都相等可得AB=AD,然后求出AB=AD=BD,從而得到△ABD是等邊三角形,再根據(jù)菱形的對(duì)角線互相平分求出AO,再根據(jù)等邊三角形的性質(zhì)可得DE=AO.
解:∵E為AB的中點(diǎn),DE⊥AB,
∴AD=DB,
∵四邊形ABCD是菱形,
∴AB=AD,
∴AD=DB=AB,
∴△ABD為等邊三角形.
∵四邊形ABCD是菱形,
∴BD⊥AC于O,AO=AC=×6=3,
由上可知DE和AO都是等邊△ABD的高,
∴DE=AO=3.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD 中,AB=AD,點(diǎn)B關(guān)于AC的對(duì)稱(chēng)點(diǎn)B′恰好落在CD上,若∠BAD=,則∠ACB的度數(shù)為( 。
A. α B. 90°-α C. 45° D. α-45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加快城鄉(xiāng)對(duì)接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對(duì)A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車(chē)原來(lái)從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開(kāi)通隧道后,汽車(chē)可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.
(1)開(kāi)通隧道前,汽車(chē)從A地到B地大約要走多少千米?
(2)開(kāi)通隧道后,汽車(chē)從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)校開(kāi)展的數(shù)學(xué)活動(dòng)課上,小明和小剛制作了一個(gè)正三樓錐(質(zhì)量均勻,四個(gè)面完全相同),并在各個(gè)面上分別標(biāo)記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;
(1)請(qǐng)用列表或者面樹(shù)狀圍的方法表示上述游戲中的所有可能結(jié)果.
(2)請(qǐng)分別隸出小明和小剛能贏的概率,并判新游戲的公平性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是常見(jiàn)的安全標(biāo)記,其中是軸對(duì)稱(chēng)圖形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是直線y=﹣x上的動(dòng)點(diǎn),點(diǎn)B是x軸上的動(dòng)點(diǎn),若AB=2,則△AOB面積的最大值為( )
A. 2 B. +1 C. -1 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)E為邊AB上任意一點(diǎn),點(diǎn)D在邊CB的延長(zhǎng)線上,且ED=EC.
(1)當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí)(如圖1),則有AE DB(填“>”“<”或“=”);
(2)猜想AE與DB的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC的頂點(diǎn)分別為A(-4, 5),B(﹣3, 2),C(4,-1).
⑴作出△ABC關(guān)于x軸對(duì)稱(chēng)的圖形△A1B1C1;
⑵寫(xiě)出A1、B1、C1的坐標(biāo);
⑶若AC=10,求△ABC的AC邊上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠ABC+.
(1)求證:AB=AC;
(2)如圖2,點(diǎn)D為AC垂直平分線上一點(diǎn)(點(diǎn)D在AC的右側(cè)),連接BD,∠DBC=30°,∠ABC 的平分線AE交BD于點(diǎn)E;
①求證:△ACD 為等邊三角形;
②若AE=nBE,△ABC 的面積記為S△ABC ,△BDC的面積記為S△BDC,則的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com