【題目】某校為學(xué)生裝一臺直飲水器,課間學(xué)生到直飲水器打水.他們先同時打開全部的水籠頭放水,后來又關(guān)閉了部分水籠頭.假設(shè)前后兩人接水間隔時間忽略不計,且不發(fā)生潑灑,直飲水器的余水量(升)與接水時間(分)的函數(shù)圖象如圖,請結(jié)合圖象回答下列問題:
(1)求當(dāng)時,與之間的函數(shù)關(guān)系式;
(2)假定每人水杯接水0.7升,要使40名學(xué)生接水完畢,課間10分鐘是否夠用?請計算回答.
【答案】(1);(2)課間10分鐘夠用,見解析.
【解析】
(1)根據(jù)函數(shù)圖象過點(5,9)和(7,6),直接用待定系數(shù)法求解即可;
(2)先求出40名同學(xué)接完水后的剩余水量,再代入(1)中所求解析式,求出時間,與10分鐘比較即可.
解:(1)設(shè)時,與之間的函數(shù)關(guān)系式為,
由題意得,解得,
所以時,與之間的函數(shù)關(guān)系式為;
(2)課間10分鐘夠用.
理由如下:
接水總量為(升),
飲水機內(nèi)剩余水量為(升),
當(dāng)時,有,
解得:,
∵<10,
∴要使40名學(xué)生接水完畢,課間10分鐘夠用.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有A、B兩個港口,水由A流向B,水流的速度是4千米/小時,甲、乙兩船同時由A順流駛向B,各自不停地在A、B之間往返航行,甲在靜水中的速度是28千米/小時,乙在靜水中的速度是20千米/小時.
設(shè)甲行駛的時間為t小時,甲船距B港口的距離為S1千米,乙船距B港口的距離為S2千米,如圖為S1(千米)和t(小時)函數(shù)關(guān)系的部分圖象.
(1)A、B兩港口距離是_____千米.
(2)在圖中畫出乙船從出發(fā)到第一次返回A港口這段時間內(nèi),S2(千米)和t(小時)的函數(shù)關(guān)系的圖象.
(3)求甲、乙兩船第二次(不算開始時甲、乙在A處的那一次)相遇點M位于A、B港口的什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若A、B兩點關(guān)于y軸對稱,點A在雙曲線y=上,點B在直線y=-x上,則點B的坐標(biāo)是___________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+4與x軸、y軸分別交于A、B兩點,以OA為邊在x軸的下方作等邊三角形OAC,將點C向上平移m個單位長度,使其對應(yīng)點C′恰好落在直線AB上,則m=( 。
A. 2﹣ B. 2+ C. 4﹣ D. 4+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.將△ABC向右平移6個單位長度,再向下平移6個單位長度得到△A1B1C1.(圖中每個小方格邊長均為1個單位長度) .
(1)在圖中畫出平移后的△A1B1C1;
(2)直接寫出△A1B1C1各頂點的坐標(biāo).
; ; ;
(3)求出△ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸交于點C(0,4).
(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的一動點,過點M作MN∥y軸交直線BC于點N,當(dāng) MN的值最大時,求△BMN的周長.
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=4S2,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=130°,AB的垂直平分線ME交BC于點M,交AB于點E,AC的垂直平分線NF交BC于點N,交AC于點F,則∠MAN為( )
A.80°B.70°C.60°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個一次函數(shù)y1=ax+b與y2=bx+a,它們在同一直角坐標(biāo)系中的圖象可能是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示,其中A(﹣2,3),B(﹣1,1),C(0,2).
(1)先作△ABC關(guān)于x軸對稱的△A1B1C1,將△A1B1C1向右平移3個單位,再作平移后的△A2B2C2;
(2)寫出A2、B2、C2三點坐標(biāo);
(3)在x軸上求作一點P,使PA1+PC2的值最小,并直接寫出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com