(2007•臨夏州)探究下表中的奧秘,并完成填空:
 一元二次方程 兩個根二次三項式因式分解 
 x2-2x+1=0 x1=1,x2=1 x2-2x+1=(x-1)(x-1)
 x2-3x+2=0 x1=1,x2=2  x2-3x+2=(x-1)(x-2)
 3x2+x-2=0 x1=,x2=-13x2+x-2=3(x-)(x+1)
 2x2+5x+2=0  x1=-,x2=-2 2x2+5x+2=2(x+)(x+2)
 4x2+13x+3=0 x1=______,x2=______  4x2+13x+3=4(x+______)(x+______)
將你發(fā)現(xiàn)的結論一般化,并寫出來.
【答案】分析:利用因式分解法,分別求出表中方程的解,總結規(guī)律,得出結論.
解答:解:填空:-,-3;4x2+13x+3=4(x+)(x+3).
發(fā)現(xiàn)的一般結論為:若一元二次方程ax2+bx+c=0的兩個根為x1、x2,則
ax2+bx+c=a(x-x1)(x-x2).
點評:本題考查學生綜合分析能力,要根據(jù)求解的過程,得出一般的結論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2007•臨夏州)3張撲克牌如圖(1)所示放在桌子上,小敏把其中一張旋轉180°后得到如圖(2)所示,則她所旋轉的牌從左數(shù)起是( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•臨夏州)順次連結任意四邊形各邊中點所得到的四邊形一定是
平行四邊形
平行四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•臨夏州)[(1)-(3),10分]如圖,已知等邊△ABC和點P,設點P到△ABC三邊AB、AC、BC(或其延長線)的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點P是邊BC的中點,此時h3=0,可得結論:h1+h2+h3=h.
在圖(2)--(5)中,點P分別在線段MC上、MC延長線上、△ABC內、△ABC外.
(1)請?zhí)骄浚簣D(2)--(5)中,h1、h2、h3、h之間的關系;(直接寫出結論)
(2)證明圖(2)所得結論;
(3)證明圖(4)所得結論.
(4)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點P在梯形內,且點P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關系為:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;圖(4)與圖(6)中的等式有何關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•臨夏州)在平面幾何中,我們可以證明:周長一定的多邊形中,正多邊形面積最大.使用上邊的事實,解答下面的問題:
用長度分別為2、3、4、5、6(單位:cm)的五根木棒圍成一個三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•臨夏州)在直角坐標系中,⊙A的半徑為4,圓心A的坐標為(2,0),⊙A與x軸交于E、F兩點,與y軸交于C、D兩點,過點C作⊙A的切線BC,交x軸于點B.
(1)求直線CB的解析式;
(2)若拋物線y=ax2+bx+c的頂點在直線BC上,與x軸的交點恰為點E、F,求該拋物線的解析式;
(3)試判斷點C是否在拋物線上;
(4)在拋物線上是否存在三個點,由它構成的三角形與△AOC相似?直接寫出兩組這樣的點.

查看答案和解析>>

同步練習冊答案