【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E、F分別在AB,AD上,若CE=,且∠ECF=45°,則CF的長(zhǎng)為( )
A. B. C. D.
【答案】A.
【解析】
試題分析:如圖,延長(zhǎng)FD到G,使DG=BE,連接CG、EF;∵四邊形ABCD為正方形,在△BCE與△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF與△ECF中,∵GC=EC,∠GCF=∠ECF,CF=CF,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=,CB=6,∴BE===3,∴AE=3,設(shè)AF=x,則DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===,故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題:探索發(fā)現(xiàn)規(guī)律拓展應(yīng)用題
(1)如圖①,∠CEF=90°,點(diǎn)B在射線EF上,AB∥CD,若∠ABE=130°,求∠C的度數(shù);
(2)如圖②,把“∠CEF=90°”改為“∠CEF=120°”,點(diǎn)B在射線EF上,AB∥CD.猜想∠ABE與∠C的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列不等式的變形正確的是( )
A.若am>bm,則a>b
B.若am2>bm2 , 則a>b
C.若a>b,則am2>bm2
D.若a>b且ab>0,則 >
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,直線EF與AB,CD分別交于點(diǎn) M,N,過(guò)點(diǎn)N的直線GH 與AB交于點(diǎn)P,則下列結(jié)論中一定正確的個(gè)數(shù)是( )
①∠EMB=∠MND;②∠BMN=∠MNC;③∠CNH=∠BPG;④∠DNG=∠AME.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=3x2先向右平移1個(gè)單位長(zhǎng)度,再向上平移4個(gè)單位長(zhǎng)度,平移后拋物線的函數(shù)表達(dá)式是( )
A. y=3(x+1)2+4B. y=3(x﹣1)2+4
C. y=3(x+1)2﹣4D. y=3(x﹣1)2﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各因式分解正確的是( )
A.﹣x2+(﹣2)2=(x﹣2)(x+2)
B.x2+2x﹣1=(x﹣1)2
C.4x2﹣4x+1=(2x﹣1)2
D.x2﹣4x=x(x+2)(x﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】媽媽煮一道菜時(shí),為了了解菜的咸淡是否適合,于是取了一點(diǎn)品嘗,這屬于___(填“全面調(diào)查”或“抽樣調(diào)查”).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com