【題目】已知△ABC是等邊三角形.

(1)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角θ(0°<θ<180°),得到△ADE,BDEC所在直線相交于點(diǎn)O.

如圖a,當(dāng)θ=20°時(shí),△ABD△ACE是否全等?   (填”),∠BOE=   度;

當(dāng)△ABC旋轉(zhuǎn)到如圖b所在位置時(shí),求∠BOE的度數(shù);

(2)如圖c,在ABAC上分別截取點(diǎn)B′C′,使AB=AB′,AC=AC′,連接B′C′,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角(0°<θ<180°),得到△ADE,BDEC所在直線相交于點(diǎn)O,請(qǐng)利用圖c探索∠BOE的度數(shù),直接寫出結(jié)果,不必說明理由.

【答案】1是,∠BOE=120°②∠BOE=120°2)當(dāng)30°時(shí),∠BOE=60°

當(dāng)30°180°時(shí),∠BOE=120°

【解析】

試題(1)是∠BOE=120°

2)由已知得:△ABC△ADE是全等的等邊三角形

∴AB=AD=AC=AE

∵△ADE是由△ABC繞點(diǎn)A旋轉(zhuǎn)得到的

∴∠BAD=∠CAE=

∴△BAD≌△CAE

∴∠ADB=∠AEC

∵∠ADB+∠ABD+∠BAD=180°

∴∠AEC+∠ABO+∠BAD=180°

∵∠ABO+∠AEC+∠BAE+∠BOE=360°

∵∠BAE=∠BAD+∠DAE

∴∠DAE+∠BOE=180°

∵∠DAE=60°

∴∠BOE=120°

3)如圖

,

cABAC上分別截取點(diǎn)B′C′,使AB=AB′,AC=AC′,連接B′C′,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角 (180°),得到△ADE,AB=AB′,AC=AC′,可得,根據(jù)旋轉(zhuǎn)的特征,所以

當(dāng)30°時(shí),∠BOE=60°

當(dāng)30°180°時(shí),∠BOE=120°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組在活動(dòng)課上測(cè)量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7 m,看旗桿頂部M的仰角為45°;小紅的眼睛與地面的距離(CD)是1.5 m,看旗桿頂部M的仰角為30°.兩人相距30米且位于旗桿兩側(cè)(點(diǎn)B,N,D在同一條直線上).求旗桿MN的高度.(參考數(shù)據(jù):≈1.414,≈1.732,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,邊上一點(diǎn),作等邊,連接.

1)求證:

2交于點(diǎn),,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB的長(zhǎng)為2,點(diǎn)C在圓周上,∠CAB=30°.點(diǎn)D是圓上一動(dòng)點(diǎn),DE∥ABCA的延長(zhǎng)線于點(diǎn)E,連接CD,交AB于點(diǎn)F.

(1)如圖1,當(dāng)DE⊙O相切時(shí),求∠CFB的度數(shù);

(2)如圖2,當(dāng)點(diǎn)FCD的中點(diǎn)時(shí),求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對(duì)應(yīng)值如下表:

x

﹣1

0

1

2

3

y

﹣1

﹣2

根據(jù)表格中的信息,完成下列各題

(1)當(dāng)x=3時(shí),y=   

(2)當(dāng)x為何值時(shí),y=0?

(3)①若自變量x的取值范圍是0≤x≤5,求函數(shù)值y的取值范圍;

若函數(shù)值y為正數(shù),則自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)DAB上異于A,B的一動(dòng)點(diǎn),將△ACD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°△BCE,則旋轉(zhuǎn)過程中△BDE周長(zhǎng)的最小值_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=3,AB=7,

(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;

(2)DE的長(zhǎng)度;

(3)BEDF的位置關(guān)系如何?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由一些棱長(zhǎng)為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎(chǔ)上(不改變?cè)瓗缀误w中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個(gè)長(zhǎng)方體,至少還需要________個(gè)小立方塊.最終搭成的長(zhǎng)方體的表面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,為直線上任意一點(diǎn),給出以下判斷:

①若點(diǎn),距離相等,且,則②若,則;③若,則;④若,且,則.其中正確的是________(把所有正確結(jié)論序號(hào)都填在橫線上)

查看答案和解析>>

同步練習(xí)冊(cè)答案