通過觀察a2+b2-2ab=(a-b)2≥0可知:,與此類比,當a≥0,b≥0時,______
【答案】分析:由(2+(2-2=(-2≥0,即可得
(1)由,可得a+b≥2,則可得x+≥2=2,繼而證得結論;
(2)首先將x+變形為(x-1)++1,然后利用幾何不等式,即可證得結論;
(3)首先將2x2+變形為2(x2+1)+-2,然后利用幾何不等式求解,即可求得最小值.
解答:解:∵(2+(2-2=(-2≥0,
即a+b-2≥0,
;

(1)證明:∵x>0,
∴x+≥2=2,
即x+≥2;

(2)證明:∵x>1,
∴x+=(x-1)++1≥2+1=2+1=3,
即x+≥3;

(3)解:2x2+=2(x2+1)+-2≥2-2=2-2,
∴2x2+的最小值為2-2.
故答案為:,(4)2-2.
點評:此題考查了幾何不等式的證明與應用.此題難度適中,解題的關鍵是掌握幾何不等式的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、比較下面兩列算式結果的大。ㄔ跈M線上選“>”“<”“=”)
(1)42+32
2×4×3
(-2)2+12
2×(-2)×1
22+22
=
2×2×2…
通過觀察歸納,得20002+20012
2×2000×2001.
(2)寫出能反映這種規(guī)律的一般結論:
a2+b2≥2ab

(3)用所學知識說明所得結論的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

通過觀察a2+b2-2ab=(a-b)2≥0可知:
a2+b2
2
≥ab
,與此類比,當a≥0,b≥0時,
a+b
2
ab
ab
(要求填寫),你觀察得到的這個不等式是一個重要不等式,它在證明不等式和求函數(shù)的極大值或者極小值中非常有用.請你運用上述不等式解決下列問題:
(1)求證:當x>0時,x+
1
x
≥2
;
(2)求證:當x>1時,x+
1
x-1
≥3

(3)2x2+
1
x2+1
的最小值是
2
2
-2
2
2
-2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

通過觀察a2+b2-2ab=(a-b)2≥0可知:
a2+b2
2
≥ab
,與此類比,當a≥0,b≥0時,
a+b
2
______(要求填寫),你觀察得到的這個不等式是一個重要不等式,它在證明不等式和求函數(shù)的極大值或者極小值中非常有用.請你運用上述不等式解決下列問題:
(1)求證:當x>0時,x+
1
x
≥2
;
(2)求證:當x>1時,x+
1
x-1
≥3
;
(3)2x2+
1
x2+1
的最小值是______.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省溫州市蒼南縣宜山高級中學高一入學考試數(shù)學試卷(解析版) 題型:解答題

通過觀察a2+b2-2ab=(a-b)2≥0可知:,與此類比,當a≥0,b≥0時,______

查看答案和解析>>

同步練習冊答案