【題目】如圖,菱形的邊, , 上一點, , 邊上一動點,將梯形沿直線折疊, 的對應(yīng)點為,當(dāng)的長度最小時, 的長為__________

【答案】

【解析】如圖所示,過點,交于點.

在菱形中,

,且,所以為等邊三角形,

根據(jù)“等腰三角形三線合一”可得

,因為,所以

中,根據(jù)勾股定理可得,

因為梯形沿直線折疊,點的對應(yīng)點為,根據(jù)翻折的性質(zhì)可得,點在以點為圓心, 為半徑的弧上,則點上時, 的長度最小,此時,因為

所以,所以,所以

點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當(dāng)C、A′、P在同一條直線時CA′取最值,由此結(jié)合直角三角形勾股定理、等邊三角形性質(zhì)求得此時CQ的長度即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

中華優(yōu)秀傳統(tǒng)文化是中華民族的“根”和“魂”,是我們必須世代傳承的文化根脈、文化基因.為傳承優(yōu)秀傳統(tǒng)文化,某校為各班購進(jìn)《三國演義》和《水滸傳》連環(huán)畫若干套,其中每套《三國演義》連環(huán)畫的價格比每套《水滸傳》連環(huán)畫的價格貴60元,用4800元購買《水滸傳》連環(huán)畫的套數(shù)是用3600元購買《三國演義》連環(huán)畫套數(shù)的2倍,求每套《水滸傳》連環(huán)畫的價格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分)某批發(fā)商以每件50元的價格購進(jìn)800T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預(yù)計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多售出10件,但最低單價應(yīng)高于購進(jìn)的價格;第二個月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元,設(shè)第二個月單價降低元.

1)填表:(不需化簡)

2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點O,ADBC交于點PBECD交于點Q,連接PQ.以下五個結(jié)論:

①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP⑤∠AOB=60°

其中正確的結(jié)論的個數(shù)是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,對角線ACBD相交于點O,AEBD,垂足為E,AD=8,

(1)若∠DAE︰∠BAE=31,求∠EAC的度數(shù);

(2)ED=3BE,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F(xiàn)BD上,BE=DF.

(1)求證:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠A=90+x°,∠B=90x°,∠CED=90°,射線EFAC,2C﹣∠D=m.1)判斷ACBD的位置關(guān)系,并說明理由.

2)如圖1,當(dāng)m=30°時,求∠C、∠D的度數(shù).

3)如圖2,求∠C、∠D的度數(shù)(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖①,直線ABCD,EABCD之間的一點,連接BE,CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC

請把下面的證明過程補充完整:

證明:過點EEFAB

ABDC(已知),EFAB(輔助線的作法),

EFDC   

∴∠C=∠CEF.(   

EFAB,∴∠B=∠BEF(同理),

∴∠B+∠C=    (等式性質(zhì))

即∠B+∠C=∠BEC

2)拓展探究:如果點E運動到圖②所示的位置,其他條件不變,求證:∠B+∠C=360°﹣∠BEC

3)解決問題:如圖③,ABDC,試寫出∠A、∠C、∠AEC的數(shù)量關(guān)系    .(直接寫出結(jié)論,不用寫計算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.

查看答案和解析>>

同步練習(xí)冊答案