【題目】已知AB=10cm,點(diǎn)C在直線AB上,如果BC=4cm,點(diǎn)D是線段AC的中點(diǎn),求線段BD的長度.

【答案】7cm3cm

【解析】

根據(jù)C點(diǎn)在直線AB上的位置分類討論①當(dāng)C點(diǎn)在線段AB間時(shí),先算出AC的長,再根據(jù)D為AC中點(diǎn),計(jì)算出CD的長,最后計(jì)算BC+CD即可;②當(dāng)C在線段AB外時(shí),先計(jì)算AC的長,再根據(jù)中點(diǎn)算出CD的長,最后計(jì)算CD-BC即可.

(1)當(dāng)C在線段AB間時(shí)

AB=10,邊長、BC=4cm

AC=6cm

點(diǎn)DAC的中點(diǎn),

所以AD=CD=AC=3cm,

∵D是AC的中點(diǎn),

∴CD=AC=3cm

BD=BC+CD=4+3=7cm

(2)當(dāng)C在線段AB外時(shí),

BC=4,AB=10

∴AC=14

∵D時(shí)AC的中點(diǎn),

CD=AC=7cm

BD=CD-BC=7-4=3cm

故答案是:7cm3cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了更好保障居民飲用水安全,環(huán)保局決定購10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種型號的設(shè)備,價(jià)格與每臺(tái)日處理污水的能力見下表.

1)若縣環(huán)保局購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為有哪幾種方案.

2)在(1)的條件下,每日要求處理污水量不低于2040噸,為了節(jié)約資金,請?jiān)O(shè)計(jì)一個(gè)最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yaxaya≠0)在同一直角坐標(biāo)系中的圖象可能是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形OABC在平面直角坐標(biāo)系內(nèi)的位置如圖所示,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(100),點(diǎn)B的坐標(biāo)為(108),已知直線AC與雙曲線ym0)在第一象限內(nèi)有一交點(diǎn)Q5,n).

1)求直線AC和雙曲線的解析式;

2)若動(dòng)點(diǎn)PA點(diǎn)出發(fā),沿折線AOOC的路徑以每秒2個(gè)單位長度的速度運(yùn)動(dòng),到達(dá)C處停止.求△OPQ的面積S與的運(yùn)動(dòng)時(shí)間t秒的函數(shù)關(guān)系式,并求當(dāng)t取何值時(shí)S10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滴滴快車是一種便捷的出行工具,計(jì)價(jià)規(guī)則如下表:

計(jì)費(fèi)項(xiàng)目

里程費(fèi)

時(shí)長費(fèi)

單價(jià)

1.4/千米

0.5/分鐘

注:車費(fèi)由里程費(fèi)、時(shí)長費(fèi)兩部分構(gòu)成,其中里程費(fèi)按行車的實(shí)際里程計(jì)費(fèi),時(shí)長費(fèi)按行車的實(shí)際時(shí)間計(jì)算。車費(fèi)不足8元的按最低消費(fèi)8元收取。為了推廣和擴(kuò)大滴滴快車的市場占有率,公司近期推出優(yōu)惠政策,凡車費(fèi)滿10元,將給予8折優(yōu)惠。

隨著互聯(lián)網(wǎng)的不斷發(fā)展,更多的人們選擇了滴滴快車出行。假設(shè)滴滴快車的平均行車速度為50 km/h,請回答下列問題:

1)小明和小冰各自乘坐滴滴快車,行車?yán)锍谭謩e為3千米和10千米,請問他們各自需付車費(fèi)多少錢?

2)張老師與王老師的家和學(xué)校在同一條直線上,位置如圖所示.一天,張老師和王老師各自從學(xué)校滴滴快車回家,分別付車費(fèi)9.6元和24.請問,張老師和王老師的家相距多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明家的住房結(jié)構(gòu)平面圖,(單位:米),裝修房子時(shí),他打算將臥室以外的部分都鋪上地磚,

(1)若鋪地磚的價(jià)格為80/平方米,那么購買地磚需要花多少錢?(用代數(shù)式表示);

(2)已知房屋的高度為3米,現(xiàn)在想要在客廳和臥室的墻壁上貼上壁紙,那么需要多少平方米的壁紙(門窗所占面積忽略不計(jì))(用代數(shù)式表示);

(3)x4,y=5,且每平方米地磚的價(jià)格是90元,每平方米壁紙的價(jià)格是15元,那么,在這兩項(xiàng)裝修中,小明共要花費(fèi)多少錢?(各種小的損耗不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快遞公司為提高快遞分揀的速度,決定購買機(jī)器人來代替人工分揀.已知購買甲型機(jī)器人1臺(tái),乙型機(jī)器人2臺(tái),共需14萬元;購買甲型機(jī)器人2臺(tái),乙型機(jī)器人3臺(tái),共需24萬元.

(1)求甲、乙兩種型號的機(jī)器人每臺(tái)的價(jià)格各是多少萬元;

(2)已知甲型和乙型機(jī)器人每臺(tái)每小時(shí)分揀快遞分別是1200件和1000件,該公司計(jì)劃購買這兩種型號的機(jī)器人共8臺(tái),總費(fèi)用不超過41萬元,并且使這8臺(tái)機(jī)器人每小時(shí)分揀快遞件數(shù)總和不少于8300件,則該公司有哪幾種購買方案?哪個(gè)方案費(fèi)用最低,最低費(fèi)用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以下各圖都是由同樣大小的圖形①按一定規(guī)律組成,其中第①個(gè)圖形中共有1個(gè)完整菱形,第②個(gè)圖形中共有5個(gè)完整菱形,第③個(gè)圖形中共有13個(gè)完整菱形,…,則第⑦個(gè)圖形中完整菱形的個(gè)數(shù)為(  )

A. 83B. 84C. 85D. 86

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=8,AD=12,MAD邊的中點(diǎn),PAB邊上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),PM的延長線交射線CDQ點(diǎn),MNPQ交射線BCN點(diǎn)。

(1)若點(diǎn)NBC之間時(shí),如圖:

①求證:∠NPQ=PQN;

②請問是否為定值?若是定值,求出該定值;若不是,請舉反例說明;

(2)當(dāng)PBNNCQ的面積相等時(shí),求AP的值.

查看答案和解析>>

同步練習(xí)冊答案