【題目】A、B、C為數(shù)軸上的三點(diǎn),動點(diǎn)A、B同時(shí)從原點(diǎn)出發(fā),動點(diǎn)A每秒運(yùn)動x個(gè)單位,動點(diǎn)B每秒運(yùn)動y個(gè)單位,且動點(diǎn)A運(yùn)動到的位置對應(yīng)的數(shù)記為a,動點(diǎn)B運(yùn)動到的位置對應(yīng)的數(shù)記為b,定點(diǎn)C對應(yīng)的數(shù)為8.
(1)若2秒后,a、b滿足|a+8|+(b﹣2)2=0,則x= , y= , 并請?jiān)跀?shù)軸上標(biāo)出A、B兩點(diǎn)的位置.
(2)若動點(diǎn)A、B在(1)運(yùn)動后的位置上保持原來的速度,且同時(shí)向正方向運(yùn)動z秒后使得|a|=|b|,使得z= .
(3)若動點(diǎn)A、B在(1)運(yùn)動后的位置上都以每秒2個(gè)單位向正方向運(yùn)動繼續(xù)運(yùn)動t秒,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離為AB,且AC+BC=1.5AB,則t= .
【答案】
(1)4,4,
(2)
(3) ;
【解析】解:(1)∵|a+8|+(b﹣2)2=0,
∴a+8=0,b﹣2=0,即a=﹣8,b=2,
則x=|﹣8|÷2=4,y=2÷2=1
( 2 )動點(diǎn)A、B在(1)運(yùn)動后的位置上保持原來的速度,且同時(shí)向正方向運(yùn)動z秒后
a=﹣8+4z,b=2+z,
∵|a|=|b|,
∴|﹣8+4z|=2+z,
解得 ;
( 3 )若動點(diǎn)A、B在(1)運(yùn)動后的位置上都以每秒2個(gè)單位向正方向運(yùn)動繼續(xù)運(yùn)動t秒后
點(diǎn)A表示:﹣8+2t,點(diǎn)B表示:2+2t,點(diǎn)C表示:8,
∴AC=|﹣8+2t﹣8|=|2t﹣16|,BC=|2+2t﹣8|=|2t﹣6|,AB=|﹣8+2t﹣(2+2t)|=10,
∵AC+BC=1.5AB
∴|2t﹣16|+|2t﹣6|=1.5×10,
解得 ;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)軸和絕對值的相關(guān)知識可以得到問題的答案,需要掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線;正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知同一平面內(nèi),∠AOB=90゜,∠AOC=60゜.
(1)填空:∠COB=;
(2)如OD平分∠BOC,OE平分∠AOC,直接寫出∠DOE的度數(shù)為;
(3)試問在(2)的條件下,如果將題目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他條件不變,你能求出∠DOE的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好治理河流水質(zhì),保護(hù)環(huán)境,某市治污公司決定購買10臺污水處理設(shè)備,現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價(jià)格,月處理污水量如表:
A型 | B型 | |
價(jià)格(萬元/臺) | a | b |
處理污水量(噸/月) | 220 | 180 |
經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多3萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少3萬元.
(1)求a,b的值;
(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過100萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)問的條件下,若每月要求處理的污水量不低于1880噸,為了節(jié)約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,A,E為格點(diǎn),B,F為小正方形邊的中點(diǎn),C為AE,BF的延長線的交點(diǎn).
(1)AE的長等于________;
(2)若點(diǎn)P在線段AC上,點(diǎn)Q在線段BC上,且滿足AP = PQ = QB,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ,并簡要說明點(diǎn)P,Q的位置是如何找到的(不要求證明)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題: =3, =0.5, =6, = , =0.
根據(jù)以上算式,回答:
(1) 一定等于a嗎?如果不是,那么 =;
(2)利用你總結(jié)的規(guī)律,計(jì)算: ①若x<2,則 =;
② = .
(3)若a,b,c為三角形的三邊長,化簡: + + .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,若AE⊥BC,∠ADC=65°,則∠ABC的度數(shù)為( )
A.30°
B.40°
C.50°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價(jià)-制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬元的利潤?當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價(jià)不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com