【題目】某快餐店共有10名員工,所有員工工資的情況如下表:
人員 | 店長 | 廚師甲 | 廚師乙 | 會(huì)計(jì) | 服務(wù)員甲 | 服務(wù)員乙 | 勤雜工 |
人數(shù) | 1 | 1 | 1 | 1 | 1 | 3 | 2 |
工資額 | 20000 | 7000 | 4000 | 2500 | 2200 | 1800 | 1200 |
請(qǐng)解答下列問題:
(1)餐廳所有員工的平均工資是 ;所有員工工資的中位數(shù)是 .
(2)用平均數(shù)還是用中位數(shù)描述該餐廳員工工資的一般水平比較恰當(dāng)?
(3)去掉店長和廚師甲的工資后,其他員工的平均工資是多少?它是否也能反映該快餐店員工工資的一般水平?
【答案】(1)4350,2000;(2)用中位數(shù)描述該餐廳員工工資的一般水平比較恰當(dāng);(3)去掉店長和廚師甲的工資后,其他員工的平均工資是2062.5元,和(2)的結(jié)果相比較,能反映餐廳員工工資的一般水平.
【解析】
(1)根據(jù)加權(quán)平均數(shù)的定義和中位數(shù)的定義即可得到結(jié)論;
(2)中位數(shù)描述該餐廳員工工資的一般水平比較恰當(dāng);
(3)由平均數(shù)的定義即可得到結(jié)論.
(1)平均工資為(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;
工資的中位數(shù)為2000元.
故答案為:4350,2000;
(2)由(1)可知,用中位數(shù)描述該餐廳員工工資的一般水平比較恰當(dāng);
(3)去掉店長和廚師甲的工資后,其他員工的平均工資是2062.5元,和(2)的結(jié)果相比較,能反映餐廳員工工資的一般水平.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.
(1)求m的值;
(2)求點(diǎn)B的坐標(biāo);
(3)該二次函數(shù)圖像上有一點(diǎn)D(x,y)(其中,),使,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊BC上的一點(diǎn),∠DAE的平分線AF交BC的延長線于點(diǎn)F,交CD于點(diǎn)G,若AB=8,BF=16,求CE的長;.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB為圓O的切線,切點(diǎn)分別為A、B,PO交AB于點(diǎn)C,PO的延長線交圓O于點(diǎn)D,下列結(jié)論不一定成立的是( )
A. PA=PBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),與點(diǎn)P同時(shí)結(jié)束運(yùn)動(dòng).
(1)當(dāng)運(yùn)動(dòng)時(shí)間為2s時(shí),P、Q兩點(diǎn)的距離為 cm;
(2)請(qǐng)你計(jì)算出發(fā)多久時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;
(3)如圖2,以點(diǎn)O為坐標(biāo)原點(diǎn),OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標(biāo)系,連結(jié)AC,與PQ相交于點(diǎn)D,若雙曲線過點(diǎn)D,問k的值是否會(huì)變化?若會(huì)變化,說明理由;若不會(huì)變化,請(qǐng)求出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形,在上取兩點(diǎn)在左邊),以為邊作等邊三角形,使頂點(diǎn)在上.
(1)求△PEF的邊長;
(2)若△PEF的邊在線段上移動(dòng).分別交于點(diǎn).求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐母線的長l等于底面半徑r的4倍,
(1)求它的側(cè)面展開圖的圓心角.
(2)當(dāng)圓錐的底面半徑r=4cm時(shí),求從B點(diǎn)出發(fā)沿圓錐側(cè)面繞一圈回到B點(diǎn)的最短路徑的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中, ,AC=BC,AB=4cm.動(dòng)點(diǎn)D沿著A→C→B的方向從A點(diǎn)運(yùn)動(dòng)到B點(diǎn).DE⊥AB,垂足為E.設(shè)AE長為cm,BD長為cm(當(dāng)D與A重合時(shí), =4;當(dāng)D與B重合時(shí)=0).
小云根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小云的探究過程,請(qǐng)補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測(cè)量,得到了與的幾組值,如下表:
補(bǔ)全上面表格,要求結(jié)果保留一位小數(shù).則__________.
(2)在下面的網(wǎng)格中建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)DB=AE時(shí),AE的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于60元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)求售價(jià)為多少元時(shí)每天獲得利潤最大,最大利潤是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com