【題目】如圖:①②③中,∠A=42°,∠1=∠2,∠3=∠4,則∠O1+∠O2+∠O3=( 。┒龋
A. 84B. 111C. 225D. 201
【答案】D
【解析】
在圖①②③中,分別根據(jù)三角形的內(nèi)角和、外角性質(zhì)及互補(bǔ)關(guān)系推導(dǎo)出∠O1、∠O2、∠O3的度數(shù),再相加即可得答案.
解:∵①②③中,∠A=42°,∠1=∠2,∠3=∠4,
∴①中,∠2+∠4=(∠1+∠2+∠3+∠4)=(180°﹣42°)=69°,故∠O1=180°﹣69°=111°;
②中,∠O2=∠4﹣∠2= [(∠3+∠4)﹣(∠1+∠2)]=∠A=21°;
③中,∠ABC+∠ACB=180°﹣∠A=180°﹣42°=138°,則∠1+∠2+∠3+∠4=180°+180°﹣138°=222°
故∠O3=180°﹣(∠2+∠3)=180°﹣×222°=69°
∴∠O1+∠O2+∠O3=111°+21°+69°=201°
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點(diǎn),E,F分別是邊BM,CM的中點(diǎn),當(dāng)AB與AD滿足什么條件時(shí),四邊形MENF是正方形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級甲、乙兩班分別選5名同學(xué)參加“學(xué)雷鋒見行動(dòng)”演講比賽,其預(yù)賽成績?nèi)鐖D:
(1)根據(jù)上圖求出下表中的a,b,c的值(單位:分);
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | a | 8.5 | 0.7 |
乙班 | b | 8 | c | 1.6 |
(2)學(xué)校決定在甲、乙兩班中選取預(yù)賽成績較好的5人參加該活動(dòng)的縣級演講比賽,求這5人預(yù)賽成績的平均分?jǐn)?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠AOB=90°,OC平分∠AOB,點(diǎn)P在射線OC上.點(diǎn)E在射線OA上,點(diǎn)F在射線OB上,且∠EPF=90°.
(1)如圖1,求證:PE=PF;
(2)如圖2,作點(diǎn)F關(guān)于直線EP的對稱點(diǎn)F′,過F′點(diǎn)作FH⊥OF于H,連接EF′,F′H與EP交于點(diǎn)M.連接FM,圖中與∠EFM相等的角共有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的月日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購.經(jīng)調(diào)查:購買臺甲型設(shè)備比購買臺乙型設(shè)備多花萬元,購買臺甲型設(shè)備比購買臺乙型設(shè)備少花萬元.
(1)求甲、乙兩種型號設(shè)備每臺的價(jià)格;
(2)該公司經(jīng)決定購買甲型設(shè)備不少于臺,預(yù)算購買節(jié)省能源的新設(shè)備資金不超過萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備每月的產(chǎn)量為噸,乙型設(shè)備每月的產(chǎn)量為噸.若每月要求產(chǎn)量不低于噸,為了節(jié)約資金,請你為該公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系.請根據(jù)圖象,解答下列問題:
(1)線段CD表示轎車在途中停留了 h;
(2)求線段DE對應(yīng)的函數(shù)解析式;
(3)求轎車從甲地出發(fā)后經(jīng)過多長時(shí)間追上貨車.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC=90°.
(1)如圖1,分別過A、C兩點(diǎn)作經(jīng)過點(diǎn)B的直線的垂線,垂足分別為M、N,求證:△ABM∽△BCN;
(2)如圖2,P是邊BC上一點(diǎn),∠BAP=∠C,tan∠PAC=,求tanC的值;
(3)如圖3,D是邊CA延長線上一點(diǎn),AE=AB,∠DEB=90°,sin∠BAC=,,直接寫出tan∠CEB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=36°,AB=AC,CD是△ACB的角平分線.若在邊AC上截取CE=CB,連接DE,則圖中等腰三角形共有( )
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=10cm,點(diǎn)P從點(diǎn)B出發(fā),沿BA方向以每秒cm的速度向終點(diǎn)A運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿CB方向以每秒1 cm的速度向終點(diǎn)B運(yùn)動(dòng),將△BPQ沿BC翻折,點(diǎn)P的對應(yīng)點(diǎn)為點(diǎn)P′,設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)四邊形QPBP′為菱形時(shí),t的值為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com