【題目】如圖,甲、乙兩動(dòng)點(diǎn)分別從正方形 ABCD 的頂點(diǎn) A、C 同時(shí)沿正方形的邊開始移動(dòng),甲點(diǎn)依順時(shí)針方向環(huán)行,乙點(diǎn)依逆時(shí)針方向環(huán)行.若甲的速度是乙的速度的 3 倍,則它們第 2018 次相遇在邊( )上.
A. CDB. ADC. ABD. BC
【答案】B
【解析】
根據(jù)甲的速度是乙的速度的 3 倍,除第一次相遇路程和為兩個(gè)邊長(zhǎng)外,其余每次相遇路程和都是四個(gè)邊長(zhǎng),所以甲乙每隔四次循環(huán)一次,找到規(guī)律即可解題.
設(shè)正方形的邊長(zhǎng)為a,
∵甲的速度是乙的速度的 3 倍,
∴時(shí)間相同,甲乙的路程比是3:1,
∴第一次相遇,甲乙的路程和是2a,此時(shí)甲走了a, 乙走了a,在CD邊相遇,
第二次相遇, 甲乙的路程和是4a,此時(shí)甲走了 ,乙走了,在AD邊相遇,
第三次相遇, 甲乙的路程和是4a,此時(shí)甲走了 ,乙走了,在AB邊相遇,
第四次相遇, 甲乙的路程和是4a,此時(shí)甲走了 ,乙走了,在BC邊相遇,
第五次相遇, 甲乙的路程和是4a,此時(shí)甲走了 ,乙走了,在CD邊相遇,
......
∵2018=5044+2,
∴它們第2018次相遇在邊AD上,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ABC中,∠BAC=60°,內(nèi)角∠ABC、∠ACB的平分線相交于點(diǎn)O,則∠BOC=______;
(2)如圖2,△ABC中,∠BAC=60°,AD是△ABC的邊BC上的高,且∠B=∠1,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等邊三角形,P為平面內(nèi)的一個(gè)動(dòng)點(diǎn),BP=BA,0<∠PBC<180 ,DB平分∠PBC,且DB=DA.
(1)當(dāng)BP與BA重合時(shí)(如圖1),求∠BPD的度數(shù);
(2)當(dāng)BP在∠ABC的內(nèi)部時(shí)(如圖2),求∠BPD的度數(shù);
(3)當(dāng)BP在∠ABC的外部時(shí),請(qǐng)你直接寫出∠BPD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知將一矩形紙片ABCD折疊,使頂點(diǎn)A與C重合,折痕為EF.
(1)求證:CE=CF;
(2)若AB =8 cm,BC=16 cm,連接AF,寫出求四邊形AFCE面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,是由一個(gè)等邊△ABE和一個(gè)矩形BCDE拼成的一個(gè)圖形,其點(diǎn)B,C,D的坐標(biāo)分別為(1,2),(1,1),(3,1).
(1)直接寫出E點(diǎn)和A點(diǎn)的坐標(biāo);
(2)試以點(diǎn)B為位似中心,作出位似圖形A1B1C1D1E1,使所作的圖形與原圖形的位似比為3∶1;
(3)直接寫出圖形A1B1C1D1E1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E。
(1)①求證圖1中△ADC≌△CEB;②證明DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),請(qǐng)說明DE=AD-BE的理由;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問DE、AD、BE又具有怎樣的等量關(guān)系?請(qǐng)直接寫出這個(gè)等量關(guān)系(不必說明理由)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組條件中,能夠判定△ABC≌△DEF 的是( )
A. ∠A=∠D,∠B=∠E,∠C=∠FB. AB=DE,BC=EF,∠A=∠D
C. ∠B=∠E=90°,BC=EF,AC=DFD. ∠A=∠D,AB=DF,∠B=∠E
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,,,F是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持,連接DE、DF、EF在此運(yùn)動(dòng)變化的過程中,下列結(jié)論:(1)是等腰直角三角形;四邊形CDFE不可能為正方形,(3)長(zhǎng)度的最小值為4;(4)連接CF,CF恰好把四邊形CDFE的面積分成1:2兩部分,則或其中正確的結(jié)論個(gè)數(shù)是
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=3∠BCF,∠ACF=20°.
(1)求∠FEC的度數(shù);
(2)若∠BAC=3∠B,求證:AB⊥AC;
(3)當(dāng)∠DAB=______度時(shí),∠BAC=∠AEC.(請(qǐng)直接填出結(jié)果,不用證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com