【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣a(x+1)(x﹣3)(a>0)x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.拋物線的對(duì)稱軸與x軸交于點(diǎn)E,過點(diǎn)Cx軸的平行線,與拋物線交于點(diǎn)D,連接DE,延長(zhǎng)DEy軸于點(diǎn)F,連接AD、AF.

(1)點(diǎn)A的坐標(biāo)為____________,點(diǎn)B的坐標(biāo)為_________ ;

(2)判斷四邊形ACDE的形狀,并給出證明;

(3)當(dāng)a為何值時(shí),ADF是直角三角形?

【答案】(1)點(diǎn)A(﹣1,0),點(diǎn)B(3,0);(2)四邊形ACDE是平行四邊形.證明見解析;(3)當(dāng)時(shí),△ADF為直角三角形.

【解析】

(1)根據(jù)拋物線的解析式可知當(dāng)y=0時(shí),x=﹣1x=3,即可得解;

(2)由(1)可得拋物線對(duì)稱軸為直線x=1,根據(jù)拋物線圖象性質(zhì)易得AE=CD=2,又因?yàn)?/span>,所以四邊形ACDE是平行四邊形;

(3)過點(diǎn)DDG⊥AB于點(diǎn)G,通過“角邊角”易證△OEF ≌△DEG,OF=GD=3a,F點(diǎn)坐標(biāo)為(0,-3a),①∠DAF=90°,則∠DAG+∠FAO=90°,然后證明△AOF∽△DGA,得到,然后求得符合題意的a即可;∠DFA=90°,則∠DFC+∠AFO=90°,易得OF垂直平分AE,AF=EF,∠DFC=∠AFO=45°,所以OF=OA,,a=.

(1)根據(jù)題意可知,

∵y=﹣a(x+1)(x﹣3),

當(dāng)y=0時(shí),x=﹣1x=3,

點(diǎn)A(﹣1,0),點(diǎn)B(3,0);

(2)四邊形ACDE是平行四邊形.

證明如下:令,

點(diǎn)A(﹣1,0),B(3,0),

拋物線的對(duì)稱軸為直線x=1,

∴點(diǎn)D(2,3a),E(1,0),

∴AE=CD=2,

四邊形ACDE是平行四邊形;

(3)過點(diǎn)DDG⊥AB于點(diǎn)G,由,可知OE=GE,

∵∠FOE=∠DGE=90°,∠OEF=∠GED,

∴△OEF ≌△DEG(ASA),

∴OF=GD=3a,

∴F點(diǎn)坐標(biāo)為(0,-3a),

討論:∠DAF=90°,則∠DAG+∠FAO=90°,

∠FAO+∠AFO=90°,

∴∠DAG=∠AFO,

∠AOF=∠DGA=90°,

∴△AOF∽△DGA,

,

,

,

∵a > 0,

,

以上各步均可逆,故合題意;

∠DFA=90°,則∠DFC+∠AFO=90°,

,

∴OF垂直平分AE,

∴AF=EF,

∴∠DFC=∠AFO=45°,

∴OF=OA,

,

,

以上各步均可逆,故合題意.

綜上,當(dāng)時(shí),△ADF為直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個(gè)信封,每個(gè)信封內(nèi)各裝有四張完全相同的卡片,其中一個(gè)信封內(nèi)的四張卡片上分別寫有1,2,3,4四個(gè)數(shù),另一個(gè)信封內(nèi)的四張卡片上分別寫有5,6,7,8四個(gè)數(shù).甲,乙兩人商定了一個(gè)游戲,規(guī)則是:從這兩個(gè)信封中各隨機(jī)抽取一張卡片,然后把卡片上的兩個(gè)數(shù)相乘,如果得到的積大于16,則甲獲勝,否則乙獲勝.

(1)請(qǐng)你通過列表(或畫樹狀圖)計(jì)算甲獲勝的概率;

(2)你認(rèn)為這個(gè)游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx2x

(1)在平面直角坐標(biāo)系內(nèi),畫出該二次函數(shù)的圖象;

(2)根據(jù)圖象寫出:當(dāng)x   時(shí),y>0;

當(dāng)0<x<4時(shí),y的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是邊長(zhǎng)為1的正方形,OCx軸正半軸的夾角為15°,點(diǎn)B在拋物線y=ax2(a<0)的圖象上,則a的值為(  )

A. B. C. ﹣2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D

1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過點(diǎn)C

①求拋物線的函數(shù)關(guān)系式;

②如圖2,點(diǎn)Ey軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)PM、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MFx軸于點(diǎn)F,若線段MFBF12,求點(diǎn)M、N的坐標(biāo);

③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣a(x+1)(x﹣3)(a>0)x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.拋物線的對(duì)稱軸與x軸交于點(diǎn)E,過點(diǎn)Cx軸的平行線,與拋物線交于點(diǎn)D,連接DE,延長(zhǎng)DEy軸于點(diǎn)F,連接AD、AF.

(1)點(diǎn)A的坐標(biāo)為____________,點(diǎn)B的坐標(biāo)為_________ ;

(2)判斷四邊形ACDE的形狀,并給出證明;

(3)當(dāng)a為何值時(shí),ADF是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小梅家的陽臺(tái)上放置了一個(gè)曬衣架如圖1,圖2是曬衣架的側(cè)面示意圖,A,B兩點(diǎn)立于地面,將曬衣架穩(wěn)固張開,測(cè)得張角AOB=62°,立桿OA=OB=140cm,小梅的連衣裙穿在衣架后的總長(zhǎng)度為122cm,問將這件連衣裙垂掛在曬衣架上是否會(huì)拖落到地面?請(qǐng)通過計(jì)算說明理由(參考數(shù)據(jù):sin59°0.86,cos59°0.52,tan59°1.66)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yy在第一象限內(nèi)的圖象如圖,點(diǎn)Py的圖象上一動(dòng)點(diǎn),PCx軸于點(diǎn)C,交y的圖象于點(diǎn)B.給出如下結(jié)論:①△ODBOCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積大小不會(huì)發(fā)生變化;④CAAP.其中所有正確結(jié)論的序號(hào)是( 。

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角ABC的斜邊AC放在直線l上,按順時(shí)針的方向在直線l上轉(zhuǎn)動(dòng)兩次,使它轉(zhuǎn)到A2B1C2的位置,設(shè)AB BAC30°,則頂點(diǎn)A運(yùn)動(dòng)到點(diǎn)A2的位置時(shí),點(diǎn)A所經(jīng)過的路線為( 。

A. +π B. +π C. D. π

查看答案和解析>>

同步練習(xí)冊(cè)答案