【題目】推理填空:

如圖,直線AB,CD被直線EF所截,AD是∠CAB的角平分線,若∠3=1,∠2=50°,求∠4的度數(shù).

解:∵直線AB與直線EF相交,

∴∠2=CAB=50°.(

AD是∠CAB的角平分線,

∴∠1=5=CAB=25°,(

∵∠3=1,(已知)

∴∠3=25°,(等量代換)

∴∠3=5,(等量代換)

_______.(

CDAB,(

_______.(兩直線平行,同位角相等)

【答案】對(duì)頂角相等;角平分線定義;CDAB;內(nèi)錯(cuò)角相等,兩直線平行;已證;∠4=2=50°

【解析】

根據(jù)平行線的判定及性質(zhì)求角的過(guò)程,一步步把求解的過(guò)程補(bǔ)充完整即可.

直線AB與直線EF相交,

∴∠2=CAB=50°(對(duì)頂角相等),

AD是∠CAB的角平分線,

∴∠1=DAB=CAB=25°(角平分線的定義),

∵∠3=1,(已知)

∴∠3=25°,(等量代換)

∴∠3=5,(等量代換)

CDAB.( 內(nèi)錯(cuò)角相等,兩直線平行)

CDAB,( 已證)

∴∠4=2=50°.(兩直線平行,同位角相等)

故答案為:對(duì)頂角相等;角平分線定義;CDAB,內(nèi)錯(cuò)角相等,兩直線平行;已證;∠4=2=50°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,過(guò)B作一直線與CD相交于點(diǎn)E,過(guò)AAF垂直BE于點(diǎn)F,過(guò)CCG垂直BE于點(diǎn)G,在FA上截取FH=FB,再過(guò)HHP垂直AFABP.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳。經(jīng)過(guò)測(cè)試:同時(shí)開放1個(gè)大餐廳和2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開放2個(gè)大餐廳和1個(gè)小餐廳,可供2280名學(xué)生就餐。

(1)1個(gè)大餐廳和1個(gè)小餐廳分別可供多少名學(xué)生就餐?

(2)若7個(gè)餐廳同時(shí)開放,能否供全校的5300名學(xué)生就餐?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果拋物線yax2bxc過(guò)定點(diǎn)M(1,0),則稱此拋物線為定點(diǎn)拋物線.

(1)張老師在投影屏幕上出示了一個(gè)題目:請(qǐng)你寫出一條定點(diǎn)拋物線的解析式.小敏寫出了一個(gè)正確的答案:y=2x2+3x-5.請(qǐng)你寫出一個(gè)不同于小敏的答案;

(2)張老師又在投影屏幕上出示了一個(gè)思考題:已知定點(diǎn)拋物線y=-x2+2bxc,求該拋物線的頂點(diǎn)最低時(shí)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AC為對(duì)角線,點(diǎn)E、F分別是邊BC、AD的中點(diǎn).

(1)求證:ABE≌△CDF;

(2)若B=60°,AB=4,求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=2,∠B=C=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段ACE

1)當(dāng)∠BDA=115°時(shí),∠EDC=______°,∠DEC=______°;點(diǎn)DBC運(yùn)動(dòng)時(shí),∠BDA逐漸變______(填);

2)當(dāng)DC等于多少時(shí),ABD≌△DCE,請(qǐng)說(shuō)明理由;

3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫出∠BDA的度數(shù).若不可以,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BOC=60°,點(diǎn)ABO延長(zhǎng)線上的一點(diǎn),OA=10cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB2cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OC1cm/s的速度移動(dòng),如果點(diǎn)PQ同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間,當(dāng)t=_____s時(shí),△POQ是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,H是△ABC的高AD,BE的交點(diǎn),且DH=DC,則下列結(jié)論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,ABC的平分線交AD于點(diǎn)F.若BF=12,AB=10,則AE的長(zhǎng)為( 。

A. 10 B. 12 C. 16 D. 18

查看答案和解析>>

同步練習(xí)冊(cè)答案