如圖,A、B、C、D四點(diǎn)都在⊙O上,若∠COD=80°,則∠ABD+∠OCA=   
【答案】分析:連接CD,由圓周角定理可知∠ACD=∠ABD,故∠ABD+∠OCA=∠OCD,在等腰△OCD中,由三角形內(nèi)角和定理即可得出結(jié)論.
解答:解:連接CD,
∵∠ABD與∠ACD是同弧所對(duì)的圓周角,
∴∠ACD=∠ABD,
∴∠ABD+∠OCA=∠OCD,
在等腰△OCD中,
∵∠COD=80°,
∴∠OCD===50°,即∠ABD+∠OCA=50°.
故答案為:50°.
點(diǎn)評(píng):本題考查的是圓周角定理及等腰三角形的性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出圓周角是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點(diǎn)是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點(diǎn),過(guò)A,B兩點(diǎn)分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點(diǎn)得菱形,又順次連接菱形各邊中點(diǎn)得矩形,再順次連接矩形各邊中點(diǎn)得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖是某幾何體的三視圖,則這個(gè)幾何體是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過(guò)BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案