【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,C為線段AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)點(diǎn)C表示的數(shù)是;
(2)當(dāng)t=秒時(shí),點(diǎn)P到達(dá)點(diǎn)A處;
(3)點(diǎn)P表示的數(shù)是(用含字母t的代數(shù)式表示);
(4)當(dāng)t=秒時(shí),線段PC的長(zhǎng)為2個(gè)單位長(zhǎng)度;
(5)若動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),那么,當(dāng)t=秒時(shí),PQ的長(zhǎng)為1個(gè)單位長(zhǎng)度.
【答案】
(1)1
(2)5
(3)2t﹣4
(4)1.5秒或3.5秒
(5)3秒或 秒
【解析】解:(1)(6﹣4)÷2=2÷2=1.故點(diǎn)C表示的數(shù)是1.故答案為:1;
(2)[6﹣(﹣4)]÷2
=10÷2
=5(秒).
答:當(dāng)t=5秒時(shí),點(diǎn)P到達(dá)點(diǎn)A處.
故答案為:5;
(3)點(diǎn)P表示的數(shù)是2t﹣4.
故答案為:2t﹣4;
(4)P在點(diǎn)C左邊,
[1﹣2﹣(﹣4)]÷2
=3÷2
=1.5(秒).
P在點(diǎn)C右邊,
[1+2﹣(﹣4)]÷2
=7÷2
=3.5(秒).
答:當(dāng)t=1.5秒或3.5秒秒時(shí),線段PC的長(zhǎng)為2個(gè)單位長(zhǎng)度.
故答案為:1.5秒或3.5秒;
(5)點(diǎn)P、Q相遇前,依題意有
(2+1)t=6﹣(﹣4)﹣1,
解得t=3;
點(diǎn)P、Q相遇后,依題意有
(2+1)t=6﹣(﹣4)+1,
解得t= .
答:當(dāng)t=3秒或 秒秒時(shí),PQ的長(zhǎng)為1個(gè)單位長(zhǎng)度.
故答案為:3秒或 秒.
(1)根據(jù)線段中點(diǎn)坐標(biāo)公式可求點(diǎn)C表示的數(shù);(2)根據(jù)時(shí)間=路程÷速度,可求t的值;(3)根據(jù)兩點(diǎn)之間的距離公式可求點(diǎn)P表示的數(shù);(4)分P在點(diǎn)C左邊和點(diǎn)C右邊兩種情況討論求解;(5)分點(diǎn)P、Q相遇前和點(diǎn)P、Q相遇后兩種情況討論求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,池塘邊有一塊長(zhǎng)為20米,寬為12米的長(zhǎng)方形土地,現(xiàn)在將其余三面留出寬都是x米的小路,中間余下的長(zhǎng)方形部分做菜地,用代數(shù)式表示:
(1)菜地的長(zhǎng)a=米,寬b=米;
(2)菜地的面積S=平方米;
(3)求當(dāng)x=2米時(shí),菜地的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 (a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種正方形合金板材的成本y(元)與它的面積成正比,設(shè)邊長(zhǎng)為xcm.當(dāng)x=3時(shí),y=18,那么當(dāng)成本為72元時(shí),邊長(zhǎng)為( )
A. 6cmB. 12cmC. 24cmD. 36cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下文,尋找規(guī)律.
計(jì)算:(1﹣x)(1+x)=1﹣x2 , (1﹣x)(1+x+x2)=1﹣x3 , (1﹣x)(1+x+x2+x3)=1﹣x4….
(1)觀察上式,并猜想:(1﹣x)(1+x+x2+…+xn)= .
(2)根據(jù)你的猜想,計(jì)算:1+3+32+33…+3n= . (其中n是正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(1,0)、B(4,0)、C(0,3)三點(diǎn).
(1)求拋物線的解析式;
(2)如圖①,在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得四邊形PAOC的周長(zhǎng)最?若存在,求出四邊形PAOC周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)如圖②,點(diǎn)Q是線段OB上一動(dòng)點(diǎn),連接BC,在線段BC上是否存在這樣的點(diǎn)M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com