【題目】如圖,在△ABC中,AB≠AC.D、E分別為邊AB、AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件: , 可以使得△FDB與△ADE相似.(只需寫出一個)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l與半徑為4的⊙O相切于點A,P是⊙O上的一個動點(不與點A重合),過點P作PB⊥l,垂足為B,連接PA.設PA=x,PB=y,則(x﹣y)的最大值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,反比例函數(shù)y=﹣ (x<0)的圖象過點A(﹣1,a),反比例函數(shù)y= (k>0,x>0)的圖象過點B,且AB∥x軸.
(1)求a和k的值;
(2)過點B作MN∥OA,交x軸于點M,交y軸于點N,交雙曲線y= 于另一點,求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關系如圖,請結(jié)合圖象,解答下列問題:
(1)a= , b= , m= ;
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達圖書館前,何時與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=2x+m與拋物線y=ax2+ax+b有一個公共點M(1,0),且a<b.
(Ⅰ)求拋物線頂點Q的坐標(用含a的代數(shù)式表示);
(Ⅱ)說明直線與拋物線有兩個交點;
(Ⅲ)直線與拋物線的另一個交點記為N.
(ⅰ)若﹣1≤a≤﹣ ,求線段MN長度的取值范圍;
(ⅱ)求△QMN面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜加工公司先后兩批次收購蒜薹(tái)共100噸.第一批蒜薹價格為4000元/噸;因蒜薹大量上市,第二批價格跌至1000元/噸.這兩批蒜苔共用去16萬元.
(1)求兩批次購進蒜薹各多少噸?
(2)公司收購后對蒜薹進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應為多少噸?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統(tǒng)計圖表.
組別 | 分數(shù)段 | 頻次 | 頻率 |
A | 60≤x<70 | 17 | 0.17 |
B | 70≤x<80 | 30 | a |
C | 80≤x<90 | b | 0.45 |
D | 90≤x<100 | 8 | 0.08 |
請根據(jù)所給信息,解答以下問題:
(1)表中a= , b=;
(2)請計算扇形統(tǒng)計圖中B組對應扇形的圓心角的度數(shù);
(3)已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣a﹣b(a<0,a、b為常數(shù))與x軸交于A、C兩點,與y軸交于B點,直線AB的函數(shù)關系式為y= x+ .
(1)求該拋物線的函數(shù)關系式與C點坐標;
(2)已知點M(m,0)是線段OA上的一個動點,過點M作x軸的垂線l分別與直線AB和拋物線交于D、E兩點,當m為何值時,△BDE恰好是以DE為底邊的等腰三角形?
(3)在(2)問條件下,當△BDE恰好是以DE為底邊的等腰三角形時,動點M相應位置記為點M′,將OM′繞原點O順時針旋轉(zhuǎn)得到ON(旋轉(zhuǎn)角在0°到90°之間);
i:探究:線段OB上是否存在定點P(P不與O、B重合),無論ON如何旋轉(zhuǎn), 始終保持不變,若存在,試求出P點坐標;若不存在,請說明理由;
ii:試求出此旋轉(zhuǎn)過程中,(NA+ NB)的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣asinx﹣1,a∈R.
(1)若a=1,求f(x)在x=0處的切線方程;
(2)若f(x)≥0在區(qū)間[0,1)恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com