【題目】如圖,OABC是平行四邊形,對角線OB在軸正半軸上,位于第一象限的點(diǎn)A和第二象限的點(diǎn)C分別在雙曲線y=y=的一支上,分別過點(diǎn)A、Cx軸的垂線,垂足分別為MN,則有以下的結(jié)論:①;②陰影部分面積是k1+k2);③當(dāng)∠AOC=90°時,|k1|=|k2|;④若OABC是菱形,則兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.其中正確的結(jié)論是(

A.①②B.①④C.③④D.①②③

【答案】B

【解析】

AEy軸于點(diǎn)ECFy軸于點(diǎn)F,根據(jù)平行四邊形的性質(zhì)得SAOB=SCOB,利用三角形面積公式得到AE=CF,則有OM=ON,再利用反比例函數(shù)k的幾何意義和三角形面積公式得到SAOM=|k1|=OMAMSCON=|k2|=ONCN,所以有;由SAOM=|k1|SCON=|k2|,得到S陰影部分=SAOM+SCON=|k1|+|k2|=k1-k2);當(dāng)∠AOC=90°,得到四邊形OABC是矩形,由于不能確定OAOC相等,則不能判斷△AOM≌△CNO,所以不能判斷AM=CN,則不能確定|k1|=|k2|;若OABC是菱形,根據(jù)菱形的性質(zhì)得OA=OC,可判斷RtAOMRtCNO,則AM=CN,所以|k1|=|k2|,即k1=-k2,根據(jù)反比例函數(shù)的性質(zhì)得兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.

AEy軸于ECFy軸于F,如圖,

∵四邊形OABC是平行四邊形,

SAOB=SCOB,

AE=CF

OM=ON,

SAOM=|k1|=OMAM,SCON=|k2|=ONCN

,故①正確;

SAOM=|k1|SCON=|k2|

S陰影部分=SAOM+SCON=|k1|+|k2|),

k10k20,

S陰影部分=k1-k2),故②錯誤;

當(dāng)∠AOC=90°,

∴四邊形OABC是矩形,

∴不能確定OAOC相等,

OM=ON,

∴不能判斷△AOM≌△CNO,

∴不能判斷AM=CN

∴不能確定|k1|=|k2|,故③錯誤;

OABC是菱形,則OA=OC,

OM=ON

RtAOMRtCNO,

AM=CN,

|k1|=|k2|,

k1=-k2,

∴兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱,故④正確.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正內(nèi)接于是劣弧BC上任意一點(diǎn),PABC交于點(diǎn)E,有如下結(jié)論:

; ;

圖中共有6對相似三角形.

其中,正確結(jié)論的個數(shù)為

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】30箱蘋果,以每箱20千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)質(zhì)量的差

(單位:千克)

1

2

箱數(shù)

2

6

10

8

4

(1)這30箱蘋果中,最重的一箱比最輕的一箱重多少千克?

(2)與標(biāo)準(zhǔn)質(zhì)量比較,這30箱蘋果總計(jì)超過或不足多少千克?

(3)若蘋果每千克售價6元,則出售這30箱蘋果可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為一幅重疊放置的三角板,其中∠ABC=∠EDF=90°,BCDF共線,將△DEF沿CB方向平移,當(dāng)EF經(jīng)過AC的中點(diǎn)O時,直線EFAB于點(diǎn)G,若BC=3,則此時OG的長度為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線x軸、y軸分別相交于點(diǎn)A和點(diǎn)B,點(diǎn)C在線段AO.沿BC折疊后,點(diǎn)O恰好落在AB邊上點(diǎn)D處.

1)求出OC的長?

2)點(diǎn)E、F是直線BC上的兩點(diǎn),若是以EF為斜邊的等腰直角三角形,求點(diǎn)F的坐標(biāo);

3)取AB的中點(diǎn)M,若點(diǎn)Py軸上,點(diǎn)Q在直線AB上,是否存在以C、M、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出所有滿足條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,ABC的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o的直角坐標(biāo)系中解答下列問題:

1)作出ABC關(guān)于原點(diǎn)O成中心對稱的A1B1C1;

2)直接寫出:以A、B、C為頂點(diǎn)的平形四邊形的第四個頂點(diǎn)D的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年,隨州學(xué)子尤東梅參加《最強(qiáng)大腦》節(jié)目,成功完成了高難度的項(xiàng)目挑戰(zhàn),展現(xiàn)了驚人的記憶力.在2019年的《最強(qiáng)大腦》節(jié)目中,也有很多具有挑戰(zhàn)性的比賽項(xiàng)目,其中《幻圓》這個項(xiàng)目充分體現(xiàn)了數(shù)學(xué)的魅力.如圖是一個最簡單的二階幻圓的模型,要求:①內(nèi)、外兩個圓周上的四個數(shù)字之和相等;②外圓兩直徑上的四個數(shù)字之和相等,則圖中兩空白圓圈內(nèi)應(yīng)填寫的數(shù)字從左到右依次為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的兩條直角邊長分別為6、8,分別以它的三邊為直徑向上作三個半圓,求圖中陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)EAD邊的中點(diǎn),點(diǎn)MAB邊上的一個動點(diǎn)(不與點(diǎn)A重合),延長MECD的延長線于點(diǎn)N,連接MD,AN

1)求證:四邊形AMDN是平行四邊形.

2)當(dāng)AM的值為何值時,四邊形AMDN是矩形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案