【題目】如圖,在ABDC中,分別取AC、BD的中點(diǎn)E和F,連接BE、CF,過點(diǎn)A作AP∥BC,交DC的延長線于點(diǎn)P.
(1)求證:△ABE≌△DCF;
(2)當(dāng)∠P滿足什么條件時(shí),四邊形BECF是菱形?證明你的結(jié)論.
【答案】
(1)證明:在ABDC中,∠BAC=∠D,AB=CD,AC=BD,
∵E、F分別是AC、BD的中點(diǎn),
∴AE=DF,
在△ABE和△DCF中, ,
∴△ABE≌△DCF(SAS);
(2)解:∠P=90°時(shí),四邊形BECF是菱形.理由如下:
在ABCD中,AB∥CD,
∵AP∥BC,
∴四邊形ABCP是平行四邊形,
∴∠ABC=∠P=90°,
∵E是AC的中點(diǎn),
∴BE=CE= AC,
∵E、F分別是AC、BD的中點(diǎn),
∴BF=CE,
又∵AC∥BD,
∴四邊形BECF是平行四邊形,
∴四邊形BECF是菱形(鄰邊相等的平行四邊形是菱形).
【解析】(1)根據(jù)平行四邊形的對角相等可得∠BAC=∠D,對邊相等可得AB=CD,AC=BD,再根據(jù)中點(diǎn)定義求出AE=DF,然后利用“邊角邊”證明即可;(2)∠P=90°時(shí),四邊形BECF是菱形.先判斷出四邊形ABCP是平行四邊形,根據(jù)平行四邊形的對角相等可得∠ABC=∠P,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得BE=CE,利用一組對邊平行且相等的四邊形是平行四邊形判斷出四邊形BECF是平行四邊形,然后根據(jù)鄰邊相等的平行四邊形是菱形證明.
【考點(diǎn)精析】本題主要考查了平行四邊形的性質(zhì)和菱形的判定方法的相關(guān)知識點(diǎn),需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分;任意一個(gè)四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD,∠ABE與∠CDE兩個(gè)角的角平分線相交于點(diǎn)F.
(1)如圖1,若∠E=80°,求∠BFD的度數(shù).
(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,試寫出∠M與∠E之間的數(shù)量關(guān)系并證明你的結(jié)論.
(3)若∠ABM=∠ABF,∠CDM=∠CDF,∠E=m°,請直接用含有n,m°的代數(shù)式表示出∠M.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第二象限內(nèi)的點(diǎn)P(x,y),滿足|x|=9,y2=4,則點(diǎn)P的坐標(biāo)是( 。
A.P(9,2)B.P(-3,2)C.P(-9,2)D.P(-2,9)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB=,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由下列條件不能判定△ABC為直角三角形的是( )
A.(b+c)(b﹣c)=a2
B.a=3+k,b=4+k,c=5+k(k>0)
C.∠A+∠B=∠C
D.∠A:∠B:∠C=1:3:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是正方形ABCD的對角線,BC=2,邊BC在其所在的直線上平移,將通過平移得到的線段記為PQ,連結(jié)PA,QD,并過點(diǎn)Q作QO⊥BD,垂足為O,連結(jié)OA,OP.
(1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?
(2)請判斷OA,OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明.
(3)在平移變換過程中,設(shè)y=S△OPB,BP=x(0≤x≤2),求y與x之間的函數(shù)表達(dá)式,并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件中,不能判斷四邊形ABCD是平行四邊形的是( )
A.∠A=∠C,∠B=∠D
B.AB∥CD,AB=CD
C.AB=CD,AD∥BC
D.AB∥CD,AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D, AC交⊙O于點(diǎn)E,∠BAC=45°。
(1)求∠EBC的度數(shù);
(2)求證:BD=CD。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.3a+2a=5a2
B.3a+3b=3ab
C.2a2bc﹣a2bc=a2bc
D.a5﹣a2=a3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com