【題目】如圖,在△ABC中,AD是高,在線段DC上取一點(diǎn)E,使DE=BD,已知AB+BD=DC. 求證:E點(diǎn)在線段AC的垂直平分線上.
【答案】證明:∵AD是高,∴AD⊥BC, 又∵BD=DE,
∴AD所在的直線是線段BE的垂直平分線,
∴AB=AE,
∴AB+BD=AE+DE,
又∵AB+BD=DC,
∴DC=AE+DE,
∴DE+EC=AE+DE
∴EC=AE,
∴點(diǎn)E在線段AC的垂直平分線上
【解析】根據(jù)線段的垂直平分線性質(zhì)求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根據(jù)線段垂直平分線性質(zhì)推出即可.
【考點(diǎn)精析】本題主要考查了線段垂直平分線的性質(zhì)的相關(guān)知識點(diǎn),需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)同學(xué)們積極參加體育鍛煉,學(xué)校計(jì)劃拿出不超過2400元的資金購買一批籃球和排球,已知籃球和排球的單價(jià)比為5:1,單價(jià)和為90元.
(1)籃球和排球的單價(jià)分別是多少元?
(2)若要求購買的籃球和排球共40個(gè),且購買的籃球數(shù)量多于28個(gè),有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實(shí)“優(yōu)化稅收營商環(huán)境,助力經(jīng)濟(jì)發(fā)展和民生改善”的政策,國家稅務(wù)總局統(tǒng)計(jì)數(shù)據(jù)顯示,2018年5至10月合計(jì)減稅2980億元,將2980億元用科學(xué)記數(shù)法表示為_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠C=90°
(1)利用尺規(guī)作∠B 的角平分線交AC于D,以BD為直徑作⊙O交AB于E(保留作圖痕跡,不寫作法);
(2)綜合應(yīng)用:在(1)的條件下,連接DE
①求證:CD=DE;
②若sinA=,AC=6,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種正方形合金板材的成本y(元)與它的面積成正比,設(shè)邊長為xcm.當(dāng)x=3時(shí),y=18,那么當(dāng)成本為72元時(shí),邊長為( )
A. 6cmB. 12cmC. 24cmD. 36cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下文,尋找規(guī)律.
計(jì)算:(1﹣x)(1+x)=1﹣x2 , (1﹣x)(1+x+x2)=1﹣x3 , (1﹣x)(1+x+x2+x3)=1﹣x4….
(1)觀察上式,并猜想:(1﹣x)(1+x+x2+…+xn)= .
(2)根據(jù)你的猜想,計(jì)算:1+3+32+33…+3n= . (其中n是正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)三角形保持形狀不變,但面積擴(kuò)大為原來的4倍,那么這個(gè)三角形的邊長擴(kuò)大為原來的( )
A. 2倍B. 4倍C. 8倍D. 16倍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com