如圖1,在平面直角坐標系中,直線l:數(shù)學公式沿x軸翻折后,與x軸交于點A,與y軸交于點B,拋物線數(shù)學公式與y軸交于點D,與直線AB交于點E、點F(點F在點E的右側).
(1)求直線AB的解析式;
(2)若線段DF∥x軸,求拋物線的解析式;
(3)如圖2,在(2)的條件下,過F作FH⊥x軸于點G,與直線l交于點H,在拋物線上是否存在P、Q兩點(點P在點Q的上方),PQ與AF交于點M,與FH交于點N,使得直線PQ既平分△AFH的周長,又平分△AFH面積,如果存在,求出P、Q的坐標,若不存在,請說明理由.

(1)解:設直線AB的解析式為y=kx+b
直線 與x軸、y軸交點分別為(-2,0),(0, ),
沿x軸翻折,
∵直線,
直線AB與x軸交于同一點(-2,0)
∴A(-2,0).與y軸的交點(0, )與點B關于x軸對稱
∴B(0, ),

解得,
∴直線AB的解析式為
答:直線AB的解析式為

(2)解:設拋物線的頂點為Q(h,0),
拋物線解析式為:=,
∴D(0, ).
∵DF∥x軸,
∴點F(2h, ),
又點F在直線AB上,∴,
解得 h1=3,(舍去),
∴拋物線的解析式為
答:拋物線的解析式為y=x2-4x+6.

(3)解:過M作MT⊥FH于T,
∴Rt△MTF∽Rt△AGF.
∴FT:TM:FM=FG:GA:FA=3:4:5,
設FT=3k,TM=4k,F(xiàn)M=5k,
則FN=-FM=16-5k,
,
=48,
又∵
,
解得 或k=2 (舍去),
∴FM=6,F(xiàn)T=,MT=,GN=4,TG=
∴M(, )、N(6,-4),
∴設直線MN的解析式為:y=kx+b,
把M(, )、N(6,-4),代入得:=k+b且-4=6k+b,
解得:k=-,b=4,

聯(lián)立,
求得P(1, ),Q(3,0).
答:存在P的坐標是(1,),Q的坐標是(3,0).
分析:(1)設直線AB的解析式為y=kx+b,先求出直線 與x軸、y軸交點坐標,根據(jù)沿x軸翻折,得到A、B的坐標,把A、B的坐標代入直線AB的解析式y(tǒng)=kx+b,即可求出直線AB的解析式;
(2)設拋物線的頂點為P(h,0),得出拋物線解析式為:=,根據(jù)DF∥x軸,得出F的坐標,把F的坐標代入直線AB的解析式即可求出h的值,即可得到答案;
(3)過M作MT⊥FH于T,得到Rt△MTF∽Rt△AGF,得到FT:TM:FM=FG:GA:FA=3:4:5,設FT=3k,TM=4k,F(xiàn)M=5k,求出FN的值,根據(jù)三角形的面積公式求出△MNF和△AFH的面積,根據(jù)之間的等量關系即可求出k的值,設直線MN的解析式為:y=kx+b,
把M( )、N(6,-4),代入得到方程組,求出方程組的解即可得到直線MN的解析式,解由方程y=-x+4和y=x2-4x+6的解即可得出P、Q的坐標.
點評:本題主要考查對用待定系數(shù)法求一次函數(shù)、二次函數(shù)的解析式,解二元一次方程組、解二元二次方程組,三角形相似的性質(zhì)和判定,圖形的旋轉等知識點,綜合運用這些性質(zhì)進行計算是解此題的關鍵,此題是一個拔高的題目,有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源:同步輕松練習 八年級 數(shù)學 上 題型:059

學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年北京海淀區(qū)九年級第一學期期中測評數(shù)學試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當點為旋轉中心時,點繞著點旋轉180°得到點,點再繞著點旋轉180°得到點,這時點與點重合.

如圖2,當點、為旋轉中心時,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,小明發(fā)現(xiàn)P、兩點關于點中心對稱.

(1)請在圖2中畫出點、, 小明在證明P、兩點關于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當、為旋轉中心時,點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習冊答案