精英家教網 > 初中數學 > 題目詳情
19、如圖,△ABD與△AEC都是等邊三角形,AB≠AC,下列結論中:①BE=DC;②∠BOD=60°;③△BOD∽△COE.正確的序號是
①②
分析:利用△ABD、△AEC都是等邊三角形,求證△DAC≌△BAE,然后即可得出BE=DC.利用三角形的內角和即可得出②是正確的,不能證明③.
解答:證明:∵△ABD、△AEC都是等邊三角形,
∴AD=AB,AE=AC,∠DAB=∠CAE=60°,
∴∠DAC=∠BAC+60°,
∠BAE=∠BAC+60°,
∴∠DAC=∠BAE,
∴△DAC≌△BAE,
∴BE=DC.
∴∠ADC=∠ABE,
∵∠BOD+∠BDO+∠DBO=180°,
∴∠BOD=180°-∠BDO-∠DBO
=180°-(60°-∠ADC)-(60°+∠ABE)=60°.
故答案為:①②.
點評:此題考查學生對全等三角形的判定與性質和等邊三角形的性質的理解與掌握,難度不大,是一道基礎題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

13、如圖:△ABD與△CDB,其中AB=CD,則需要加上條件
AD=BC或∠ABD=∠BDC等
,就可達到△ABD≌△CDB.

查看答案和解析>>

科目:初中數學 來源: 題型:

5、如圖,△ABD與△ACE均為正三角形,且AB<AC,則BE與CD之間的大小關系是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•槐蔭區(qū)二模)如圖,△ABD與△AEC都是等邊三角形,AB≠AC.下列結論中,正確的是
①②
①②

①BE=CD;②∠BOD=60°;③∠BDO=∠CEO.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,∠ABD與∠ACE是△ABC的兩個外角,若∠A=70°,則∠ABD+∠ACE=
250°
250°

查看答案和解析>>

同步練習冊答案