有一塊形狀為直角梯形的鋼板ABCD,AB=BC=12,ADBC,A=90°,將鋼板切割成三個三角形材料,如圖所示,已知:EAB,DE=10,DCE=45°,DCE的面積.

 

答案:
解析:

:延長ADF使AF=BC,連結CF.

則四邊形ABCF為正方形,

延長ABM,使BM=DF,連結CM.

BM=DF,MBC=DFC=90°,CF=CB,

∴△CBM≌△CFD.

CM=CD,DCF=MCB.

∵∠DCE=45°,∴∠FCD+BCE=45°.

∴∠ECB+BCM=45°,MCE=45°.

∵△DCE≌△MCE,ME=DE=10.

SMCE=×10×12=60.SDCE=60cm2.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,某學校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,精英家教網(wǎng)BC=80m,CD=40m,現(xiàn)計劃在上面建設一個面積為S的矩形綜合樓PMBN,其中點P在線段AD上,且PM的長至少為36m.
(1)求邊AD的長;
(2)設PA=x(m),求S關于x的函數(shù)關系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長.(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源:第26章《二次函數(shù)》中考題集(48):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,某學校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,現(xiàn)計劃在上面建設一個面積為S的矩形綜合樓PMBN,其中點P在線段AD上,且PM的長至少為36m.
(1)求邊AD的長;
(2)設PA=x(m),求S關于x的函數(shù)關系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長.(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(52):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,某學校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,現(xiàn)計劃在上面建設一個面積為S的矩形綜合樓PMBN,其中點P在線段AD上,且PM的長至少為36m.
(1)求邊AD的長;
(2)設PA=x(m),求S關于x的函數(shù)關系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長.(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(47):20.5 二次函數(shù)的一些應用(解析版) 題型:解答題

如圖,某學校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,現(xiàn)計劃在上面建設一個面積為S的矩形綜合樓PMBN,其中點P在線段AD上,且PM的長至少為36m.
(1)求邊AD的長;
(2)設PA=x(m),求S關于x的函數(shù)關系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長.(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•廣州)如圖,某學校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,現(xiàn)計劃在上面建設一個面積為S的矩形綜合樓PMBN,其中點P在線段AD上,且PM的長至少為36m.
(1)求邊AD的長;
(2)設PA=x(m),求S關于x的函數(shù)關系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長.(精確到0.1m)

查看答案和解析>>

同步練習冊答案