【題目】如圖1,對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由;
(2)性質探究:如圖1,四邊形ABCD的對角線AC、BD交于點O,AC⊥BD.試證明:AB2+CD2=AD2+BC2;
(3)解決問題:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結CE、BG、GE.已知AC=4,AB=5,求GE的長.
【答案】(1)四邊形ABCD是垂美四邊形.理由見解析;(2)見解析;(3)GE=.
【解析】
(1)根據(jù)垂直平分線的判定定理證明即可;
(2)根據(jù)垂直的定義和勾股定理解答即可;
(3)根據(jù)垂美四邊形的性質、勾股定理、結合(2)的結論計算.
(1)四邊形ABCD是垂美四邊形.
證明:∵AB=AD,
∴點A在線段BD的垂直平分線上,
∵CB=CD,
∴點C在線段BD的垂直平分線上,
∴直線AC是線段BD的垂直平分線,
∴AC⊥BD,即四邊形ABCD是垂美四邊形;
(2)如圖2,
∵AC⊥BD,
∴∠AOD=∠AOB=∠BOC=∠COD=90°,
由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,
AB2+CD2=AO2+BO2+CO2+DO2,
∴AD2+BC2=AB2+CD2.
(3)連接CG、BE,
∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
在△GAB和△CAE中,
,
∴△GAB≌△CAE(SAS),
∴∠ABG=∠AEC,又∠AEC+∠AME=90°,
∴∠ABG+∠AME=90°,即CE⊥BG,
∴四邊形CGEB是垂美四邊形,
由(2)得,CG2+BE2=CB2+GE2,
∵AC=4,AB=5,
∴BC=3,CG=4,BE=5,
∴GE2=CG2+BE2﹣CB2=73,
∴GE=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知:AB=24cm,CD=8cm.
(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡).
(2)求殘片所在圓的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用6米的鋁合金型材做個如圖所示的“日”字形矩形窗框,應做成長,寬各多少米時,才能使做成的矩形窗框透光面積S(平方米)最大,最大透光面積是多少?設矩形窗框的寬為x 米(鋁合金型材寬度不計).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,AC于BD交于點O,過點O的MN分到交AB、CD于M、N.
(1)求證:AM+DN=AD;
(2)∠AOM=∠OBC,AC=2,BD=2,求MN的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,BC在直線MN上.
(1)根據(jù)下列要求補完整圖形,
①畫出△ABC關于直線MN對稱的三角形A′BC;
②在線段BC上取兩點D、E(,),使BD=CE,連接AD、AE、A′D、A′E;
(2)求證:四邊形ADA′E是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學組織七、八、九年級學生參加全區(qū)作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.
(1)此次參賽的作文篇數(shù)共有 篇;
(2)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是 度,并補全條形統(tǒng)計圖;
(3)經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在?希埨卯嫎錉顖D或列表的方法求出七年級特等獎作文被選登在?系母怕剩
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知PA=PB=PC=4,∠BPC=120°,PA∥BC,以AB、PB為鄰邊作平行四邊形ABPD,連接CD,則CD的長為_____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知:如圖1,四邊形ABCD內(nèi)接于⊙O,延長BC至E.求證:∠A+∠BCD=180°,∠DCE=∠A.
(2)依已知條件和(1)中的結論:
①如圖2,若點C在⊙O外,且A、C兩點分別在直線BD的兩側.試確定∠A+∠BCD與180°的大小關系;
②如圖3,若點C在⊙O內(nèi),且A、C兩點分別在直線BD的兩側.試確定∠A+∠BCD與180°的大小關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:
(1)OA=_____;
(2)作出∠AOB的平分線并在其上標出一個點Q,使OQ=.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com