【題目】如圖,EF分別是ADBC上的兩點(diǎn),EF將四邊形ABCD分成兩個(gè)邊長(zhǎng)為5cm的正方形,∠DEF=∠EFB=∠B=∠D=90°;點(diǎn)HCD上一點(diǎn)且CH=lcm,點(diǎn)P從點(diǎn)H出發(fā),沿HDlcm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿ABC5cm/s的速度運(yùn)動(dòng).任意一點(diǎn)先到達(dá)終點(diǎn)即停止運(yùn)動(dòng);連結(jié)EPEQ.

(1)如圖1,點(diǎn)QAB上運(yùn)動(dòng),連結(jié)QF,當(dāng)t= 時(shí),QF//EP;

(2)如圖2,若QEEP,求出t的值;

(3)試探究:當(dāng)t為何值時(shí),的面積等于面積的.

【答案】1;(2;(3t=0.5,.

【解析】

(1)假設(shè)EPFQ,得到∠PEF=EFQ,由等角的余角相等,得∠QFB=DEP,通過正切關(guān)系,得到BQPD關(guān)系,求出t

(2)通過△QEF≌△PED,得到FQPD間關(guān)系,進(jìn)而求出t的值;

(3)分類討論:①當(dāng)點(diǎn)QAB上時(shí);②當(dāng)點(diǎn)QBF上時(shí),③當(dāng)點(diǎn)QCF上時(shí),分別求出t

(1)由題意知:ED=FB=5cm,∠D=∠B=∠DEF=∠EFB=90°,

如圖,若EP∥FQ時(shí),∠PEF=∠EFQ,

∴∠DEP=∠DEF-∠PEF=∠EFB-∠EFQ=∠QFB,

∴tan∠QFB=

所以BQ=DP,

∵BQ=5-5t,DP=DC-CH-PH=5-1-t=4-t,

∴5-5t=4-t,

∴t=,

故答案為:;

(2)如圖所示,若QE⊥EP,則∠QEP+∠FEP=90°,

∵∠DEP+∠PEF=90°,

∴∠QEF=∠DEP,

△QEF△PED中,

,

∴△QEF≌△PED,

∴QF=DP

∵FQ=10-5t,DP=4-t,

∴10-5t=4-t,

;

(3)①如圖所示,過QQM⊥EF,垂足為M,

由于四邊形ABFE是正方形,所以QM=AE=5cm,

當(dāng)0t≤1時(shí),,,

當(dāng) ,

解得,t=0.5;

當(dāng)1t≤2時(shí),,

,

解得: ;

當(dāng)2t≤3時(shí), ,

解得: ,

綜合上述:t=0.5,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EBC上一動(dòng)點(diǎn),將△ABE沿AE折疊后得到△AFE,點(diǎn)F在矩形ABCD內(nèi)部,延長(zhǎng)AFCD于點(diǎn)G,AB=3,AD=4

1)如圖,當(dāng)∠DAG=30° 時(shí),求BE的長(zhǎng);

2)如圖,當(dāng)點(diǎn)EBC的中點(diǎn)時(shí),求線段GC的長(zhǎng);

3)如圖,點(diǎn)E在運(yùn)動(dòng)過程中,當(dāng)△CFE的周長(zhǎng)最小時(shí),直接寫出BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年農(nóng)歷五月初五,是中國(guó)民間的傳統(tǒng)節(jié)日——端午節(jié).它始于我國(guó)的春秋戰(zhàn)國(guó)時(shí)期,已列為世界非物質(zhì)文化遺產(chǎn).時(shí)至今日,端午節(jié)在我國(guó)仍是一個(gè)十分盛行的節(jié)日.今年端午節(jié),某地甲、乙兩家超市為吸引更多的顧客,開展促銷活動(dòng),對(duì)某種質(zhì)量和售價(jià)相同的粽子分別推出了不同的優(yōu)惠方案.甲超市的方案是:購(gòu)買該種粽子超過80元后,超出80元的部分按九折收費(fèi);乙超市的方案是:購(gòu)買該種粽子超過120元后,超出120元的部分按八折收費(fèi).請(qǐng)根據(jù)顧客購(gòu)買粽子的金額,選擇到哪家超市購(gòu)買粽子劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD//BC,BD=BC,∠ABC=900;

(1)畫出的高CE;;

(2)請(qǐng)寫出圖中的一對(duì)全等三角形(不添加任何字母),并說明理由;

(3)若,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式()或方程():

(1)(2)

(3)(x-5)(x+4)=10;(4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成,硬紙板如圖兩種方法裁剪(裁剪后邊角料不再利用)

A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。

現(xiàn)有38張硬紙板,裁剪時(shí)x張用A方法,其余用B方法。

1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個(gè)盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC中,分別延長(zhǎng)邊AB,BC,CA,使得BDAB,CE2BCAF3CA,若ABC的面積為1,則DEF的面積為( )

A. 12B. 14C. 16D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開設(shè)了豐富多彩的實(shí)踐類拓展課程,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類課程(要求人人參與,每人只能選擇一門課程).為了解學(xué)生喜愛的拓展課類別,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問題:

(1)此次共調(diào)查了多少人?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整

(3)求文學(xué)類課程在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(4)若該校有1500名學(xué)生,請(qǐng)估計(jì)喜歡體育類拓展課的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD對(duì)折,使它落在斜邊AB上,且與AE重合,則CD等于( )

A. 3cmB. 4cmC. 5cmD. 6cm

查看答案和解析>>

同步練習(xí)冊(cè)答案