【題目】某批發(fā)部某一玩具價格如圖所示,現(xiàn)有甲、乙兩個商店,計劃在“六一”兒童節(jié)前到該批發(fā)部購買此類玩具.兩商店所需玩具總數(shù)為120個,乙商店所需數(shù)量不超過50個,設(shè)甲商店購買個.如果甲、乙兩商店分別購買玩具,兩商店需付款總和為y元.
(1)求y關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若甲商店購買不超過100個,請說明甲、乙兩商店聯(lián)合購買比分別購買最多可節(jié)約多少錢;
(3)“六一”兒童節(jié)之后,該批發(fā)部對此玩具價格作了如下調(diào)整:數(shù)量不超過100個時,價格不變;數(shù)量超過100個時,每個玩具降價a元.在(2)的條件下,若甲、乙兩商店“六一”兒童節(jié)之后去批發(fā)玩具,最多可節(jié)約2800元,求a的值.
【答案】(1)①當(dāng)時,;②當(dāng)時, ;(2)最多可節(jié)約9040-7200=1840元;(3)a=8.
【解析】分析:
(1)設(shè)玩具的批發(fā)價為m,購買的數(shù)量為n,則由已知條件易得();由題意可得,由此可得,然后分①;②兩種情況結(jié)合已知條件求出y與x的函數(shù)關(guān)系式即可;
(2)由題意將(1)中所得當(dāng)時所得的函數(shù)關(guān)系式配方,即可求得兩個商店分別購買所需資金的最大量,再由已知條件計算出兩個商店聯(lián)合購買所需的資金兩,兩者比較,即可得到所求的值;
(3)由題意可知,單獨(dú)購買時,所需的最大金額不變,而聯(lián)合購買所需資金為:120(60- a)=7200-120a,由題意可得:9040-(7200-120a)=2800,解此關(guān)于a的方程即可求得所求的值.
詳解:
(1)由圖可設(shè)玩具批發(fā)價m,數(shù)量為n,則m=kn+b(),
把 (50,80),(100,60)代入可求得.
由題意得,解得.
①當(dāng)時,;
②當(dāng)時, .
(2)∵甲商店數(shù)量不超過100個,∴,∴.
∵,.
∴x=70時,y最大值=9040(元).
兩商店聯(lián)合購買需120×60=7200(元),
∴最多可節(jié)約9040-7200=1840(元).
(3)單獨(dú)購買不變,聯(lián)合購買需120(60- a)=7200-120a(元),
∴9040-(7200-120a)=2800,解得a=8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寒假即將到來,外出旅游的人數(shù)逐漸增多,對旅行包的需求也將增多,某店準(zhǔn)備到生產(chǎn)廠家購買旅行包,該廠有甲、乙兩種新型旅行包.若購進(jìn)10個甲種旅行包和20個乙種旅行包共需5600元,若購進(jìn)20個甲種旅行包和10個乙種旅行包共需5200元.
(1)甲、乙兩種旅行包的進(jìn)價分別是多少元?
(2)若該店恰好用了7000元購買旅行包;
①設(shè)該店購買了m個甲種旅行包,求該店購買乙種旅行包的個數(shù);
②若該店將甲種旅行包的售價定為298元,乙種旅行包的售價定為325元,則當(dāng)該店怎么樣進(jìn)貨,才能獲得最大利潤,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校在休息日用藥熏消毒法對教室進(jìn)行消毒. 已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(mg)與時間t(h)成正比;藥物釋放完畢后,y與t之間的函數(shù)解析式為y=(a為常數(shù)),如圖所示. 根據(jù)圖中提供的信息,解答下列問題:
(1)寫出從釋放藥物開始,y與t之間的兩個函數(shù)解析式及相應(yīng)的自變量取值范圍;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25mg以下時,學(xué)生方可進(jìn)入教室,那么藥物釋放開始,至少需要經(jīng)過多少小時,學(xué)生才能進(jìn)入教室?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市移動通訊公司開設(shè)了兩種通訊業(yè)務(wù),A類是固定用戶:先繳50元月租費(fèi),然后每通話1分鐘再付話費(fèi)0.4元;B類是“神州行”用戶:使用者不繳月租費(fèi),每通話1分鐘付話費(fèi)0.6元(這里均指市內(nèi)通話)。如果一個月內(nèi)通話時間為x分鐘,分別設(shè)A類和B類兩種通訊方式的費(fèi)用為y元和y元,
(1)寫出y、y與x之間的函數(shù)關(guān)系式。
(2)一個月內(nèi)通話多少分鐘,用戶選擇A類合算?B類呢?
(3)若某人預(yù)計使用話費(fèi)150元,他應(yīng)選擇哪種方式合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PC交⊙O于A,C兩點(diǎn),AB是⊙O的直徑,AD平分∠PAB交⊙O于點(diǎn)D,過D作DE垂直PA,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若AE=1,AC=4,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,AC是⊙O的直徑,D為⊙O上一點(diǎn),過D作⊙O的切線交BA的延長線于P,且DP⊥BP于P.若PD+PA=6,AB=6,則⊙O的直徑AC的長為( )
A. 5 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育局對該市部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了________名學(xué)生;
(2)圖②中C級所占的圓心角的度數(shù)是__________;
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該市近20000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,BC=10,AB=,∠ABC=30°,點(diǎn)P在直線AC上,點(diǎn)P到直線AB的距離為1,則CP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點(diǎn)D為x正半軸上一動點(diǎn)
(1)求A、B兩點(diǎn)的坐標(biāo)
(2)如圖,∠ADO的平分線交y軸于點(diǎn)C,點(diǎn) F為線段OD上一動點(diǎn),過點(diǎn)F作CD的平行線交y軸于點(diǎn)H,且∠AFH=45°, 判斷線段AH、FD、AD三者的數(shù)量關(guān)系,并予以證明
(3)以AO為腰,A為頂角頂點(diǎn)作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com