【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克

(1)請(qǐng)分別寫(xiě)出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;

(2)小明選擇哪家快遞公司更省錢(qián)?

【答案】(1),;(2)當(dāng)<x<4時(shí),選乙快遞公司省錢(qián);當(dāng)x=4或x=時(shí),選甲、乙兩家快遞公司快遞費(fèi)一樣多;當(dāng)0<x<或x>4時(shí),選甲快遞公司省錢(qián).

【解析】

試題分析:(1)根據(jù)“甲公司的費(fèi)用=起步價(jià)+超出重量×續(xù)重單價(jià)”可得出y關(guān)于x的函數(shù)關(guān)系式,根據(jù)“乙公司的費(fèi)用=快件重量×單價(jià)+包裝費(fèi)用”即可得出y關(guān)于x的函數(shù)關(guān)系式;

(2)分0<x≤1和x>1兩種情況討論,分別令y<y、y=y和y>y,解關(guān)于x的方程或不等式即可得出結(jié)論.

試題解析:(1)由題意知:

當(dāng)0<x≤1時(shí),y=22x;當(dāng)1<x時(shí),y=22+15(x﹣1)=15x+7.y=16x+3;

;

(2)①當(dāng)0<x≤1時(shí),令y<y,即22x<16x+3,解得:0<x<;

令y=y,即22x=16x+3,解得:x=;

令y>y,即22x>16x+3,解得:<x≤1.

②x>1時(shí),令y<y,即15x+7<16x+3,解得:x>4;

令y=y,即15x+7=16x+3,解得:x=4;

令y>y,即15x+7>16x+3,解得:0<x<4.

綜上可知:當(dāng)<x<4時(shí),選乙快遞公司省錢(qián);當(dāng)x=4或x=時(shí),選甲、乙兩家快遞公司快遞費(fèi)一樣多;當(dāng)0<x<或x>4時(shí),選甲快遞公司省錢(qián).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A(﹣3,﹣2)向上平移2個(gè)單位,再向右平移2個(gè)單位到點(diǎn)B,則點(diǎn)B的坐標(biāo)為( 。
A.(1,0)
B.(1,﹣4)
C.(﹣1,0)
D.(﹣5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與直線交于A、B兩點(diǎn),其中點(diǎn)A在y軸上,點(diǎn)B坐標(biāo)為(﹣4,﹣5),點(diǎn)P為y軸左側(cè)的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)C,交AB于點(diǎn)D

(1)求拋物線的解析式;

(2)以O(shè),A,P,D為頂點(diǎn)的平行四邊形是否存在?如存在,求點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到直線AB下方某一處時(shí),過(guò)點(diǎn)P作PM⊥AB,垂足為M,連接PA使△PAM為等腰直角三角形,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=(x12,下列結(jié)論正確的是( 。

A. 當(dāng)x0時(shí),yx的增大而減小B. 當(dāng)x0時(shí),yx的增大而增大

C. 當(dāng)x1時(shí),yx的增大而減小D. 當(dāng)x<﹣1時(shí),yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】多項(xiàng)式2x3﹣5x2+x﹣1與多項(xiàng)式3x3+(2m﹣1)x2﹣5x+3的和不含二次項(xiàng),則m=( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù) y=(x-1)2+2 的圖象下列說(shuō)法正確的是(

A. 開(kāi)口向下 B. 頂點(diǎn)坐標(biāo)是(1,2) C. 對(duì)稱(chēng)軸是 x=-1 D. 有最大值是 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)過(guò)(﹣2,4),(﹣4,4)兩點(diǎn)

(1)求二次函數(shù)的解析式;

(2)將沿x軸翻折,再向右平移2個(gè)單位,得到拋物線,直線y=m(m>0)交于M、N兩點(diǎn),求線段MN的長(zhǎng)度(用含m的代數(shù)式表示);

(3)在(2)的條件下,、交于A、B兩點(diǎn),如果直線y=m與的圖象形成的封閉曲線交于C、D兩點(diǎn)(C在左側(cè)),直線y=﹣m與、的圖象形成的封閉曲線交于E、F兩點(diǎn)(E在左側(cè)),求證:四邊形CEFD是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點(diǎn)D,交AC的延長(zhǎng)線于點(diǎn)E,連接ED,BE

(1)求證:△ABD∽△AEB;

(2)當(dāng)時(shí),求tanE;

(3)在(2)的條件下,作∠BAC的平分線,與BE交于點(diǎn)F,若AF=2,求⊙C的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列數(shù)中最小的是( 。
A.﹣2.5
B.﹣1.5
C.0
D.0.5

查看答案和解析>>

同步練習(xí)冊(cè)答案